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Abstract

In this paper, we introduce a time varying GARCH (tvGARCH (p, q)) model and

consider certain related inferential problems. A two-step local polynomial estimator for

the parameter functions of the tvGARCH (p, q) model is proposed. The asymptotic dis-

tribution of the suggested estimator depends on the unknown quantities. In order to

overcome this issue, a weighted bootstrapped estimator is suggested. We prove that the

asymptotic distribution of the bootstrapped estimator coincides with that of the actual

local polynomial estimator. The validity of the bootstrapped estimator is also estab-

lished empirically. Simulation results indicate that the bootstrapped estimator provides

a better approximation to normality than the actual estimator. We also suggest a test

statistic to test the constancy of the parameter functions of the tvGARCH (p, q) model.

The asymptotic distribution of the test statistic is derived. The bootstrapped estimator

facilitates in computation of the test statistic. The performance of the test is judged with

the help of a simulation study.

Mathematical Subject classification: 62M10, 62G05

Keywords: Local polynomial estimation, time-varying GARCH, volatility modeling, weighted

bootstrap.
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1 Introduction

Modeling financial market volatility using the non-stationary models has received con-

siderable attention in the recent years in the wake of several financial crises and high

volatility due to frequent changes in the market. Justification towards the use of such

models can be found in Rohan and Ramanathan (2012a, 2012b), Č́ižek and Spokoiny

(2009), Fryzlewicz et al. (2008), Amado and Terasvirta (2008) Dahlhaus and Subba Rao

(2006) and Mikosch and Starica (2004) among others. Rohan and Ramanathan (2012a)

(RR hereafter) generalized the time varying ARCH (tvARCH) model of Dahlhaus and

Subba Rao (2006) to a time varying GARCH (tvGARCH) (1, 1) model, by allowing the

parameters of a stationary GARCH model of Bollerslev (1986) to change slowly with

time. They also discussed a two-step local polynomial estimation procedure for the esti-

mation of the parameter functions of the model. The superiority of the tvGARCH (1,1)

over several other volatility models has been established for various data sets in RR. In

this paper, we focus on the general tvGARCH (p, q) model, of which the tvGARCH (1, 1)

and tvARCH models of RR and Dahlhaus and Subba Rao (2006) are special cases.

Let {ǫt} be a return process with E(ǫt|Ft−1) = 0 and E(ǫ2t |Ft−1) = σ2
t , where Ft−1

denotes the sigma-field generated by the data up to time t − 1. The tvGARCH (p, q)

model is defined as

ǫt = σtvt,

σ2
t = α0 (t) +

p∑
i=1

αi (t) ǫ
2
t−i +

q∑
j=1

βj (t)σ
2
t−j,

where {vt} is a sequence of real valued i.i.d. random variables and α0(·), αi(·) and

βj(·) , i = 1, 2 . . . , p, j = 1, 2, . . . , q are certain non-negative deterministic functions.

As in the case of tvGARCH (1,1) model (RR), we rescale the domain of parameter

functions of the tvGARCH (p, q) model to facilitate the asymptotics. That is, given the

sample of size n, we refer to the following as a tvGARCH (p, q) process.

ǫt = σtvt,

σ2
t = α0

(
t
n

)
+

p∑
i=1

αi

(
t
n

)
ǫ2t−i +

q∑
j=1

βj

(
t
n

)
σ2
t−j, t = 1, 2, . . . , n.

(1)

We suggest a two-step local polynomial estimator of the parameter functions of the

tvGARCH (p, q) model defined in (1) and investigate its asymptotic distributions. It

is found that their asymptotic distribution depends on the parameters of a stationary

GARCH process, which is unobservable. This limits the scope of asymptotic results. This
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stationary GARCH process is such that it locally approximates the tvGARCH process

(1) at specific time points. More details can be found in Section 2.1. Fryzlewicz et al.

(2008) suggested a residual bootstrap algorithm to tackle such problems in the case of the

tvARCH model. However, since the least squares as well as local polynomial estimators

of the parameter functions are not guaranteed to be non-negative, this method results

in some of the bootstrapped residual squares to be negative. To tackle this problem, we

propose a two-step weighted bootstrapped local polynomial estimator for the parameter

functions of the tvGARCH (p, q) process. A discussion on the weighted bootstrap and its

applications in bootstrapping linear estimators of the parameters of a stationary ARCH

model can be found in Chatterjee and Bose (2005) and Bose and Mukherjee (2009). It is

worth mentioning here that several bootstrap methods such as the Bayesian bootstrap,

deleted d-jackknives, classical paired bootstrap and bootstrap clone are the special cases

of the weighted bootstrap, see Praestgaard and Wellner (1993) and Chatterjee and Bose

(2005). Here, we prove that the distribution of the proposed bootstrap estimator of

parameter functions of the tvGARCH (p, q) model asymptotically coincides with that of

the actual local polynomial estimator. The validity of the bootstrapped estimator is also

investigated using a simulation study. Simulation results reveal that the bootstrapped

estimator provides a better approximation to normality than the actual local polynomial

estimator.

Various parametric as well as nonparametric tests have been proposed in the literature

for detecting structural breaks in the conditional variance dynamics of asset returns.

Often, these tests indicate multiple breaks in the volatility over longer period of time, see

for example Chu (1995), Andreou and Ghysels (2002), Amado and Terasvirta (2008) and

Chen and Hong (2009) among others. Recently, Chen and Hong (2009) constructed a test

for detecting changes in the parameters of GARCH models based on the Quasi maximum

likelihood (QML). However, QML has been a topic of criticism among researchers for it

tends to be shallow about minimum and hence not very reliable for small sample sizes, see

for example Shephard (1996), Bose and Mukherjee (2003) and Fryzlewicz et al. (2008).

We suggest a test statistic for testing the constancy of parameter functions of the

tvGARCH (p, q) model. The test is based on the supremum of the normalized deviations

of the estimated coefficient functions from the true coefficient functions of the tvGARCH

(p, q) model. The limiting distribution of the test statistic is derived. Confidence bands
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for the parameter functions of the tvGARCH (p, q) model are also developed. The pro-

posed bootstrap method facilitates in the easy computation of confidence bands and test

statistic. The method is illustrated with the help of simulated data.

The rest of the paper is organized as follows. In Section 2, we develop a bootstrapped

local polynomial estimator of the parameter functions of tvGARCH (p, q) model. Here,

we also prove the asymptotic normality of the proposed estimators. Section 3 deals with

the construction of confidence bands and tests of hypothesis in tvGARCH model. In

Section 4, we report the simulations studies. All the proofs are deferred to the Appendix.

2 Local polynomial estimation and bootstrapping

Consider a tvGARCH (1,1) model introduced by RR,

ǫt = σtvt
σ2
t = α0

(
t
n

)
+ α

(
t
n

)
ǫ2t−1 + β

(
t
n

)
σ2
t−1,

(2)

By recursive substitution, (2) may be written as

σ2
t = α′

0(
t
n
) +

t−1∑
k=1

α′

k(
t
n
)ǫ2t−k + σ2

0

t∏
i=1

β
(
t−i+1

n

)
, (3)

where

α′

0(
t
n
) = α0

(
t
n

)
+

t−1∑
k=1

α0

(
t−k
n

) k∏
i=1

β
(
t−i+1

n

)
, α′

k(
t
n
) = α

(
t−k+1

n

) k−1∏
i=1

β
(
t−i+1

n

)
,

k = 1, 2, . . . t− 1.

Here we take
0∏

i=1
β
(
t−i+1

n

)
= 1. Notice that the functions α′

k(·) are geometrically decaying

as k → ∞ under the assumption A1 (Section 2.1). Also, if σ2
0 is finite with probability

one, then σ2
0

t∏
i=1

β
(
t−i+1

n

)
P→ 0 as t → ∞, n → ∞.

Similarly, by recursive substitution for σ2
t−j in (1), we can write

σ2
t = µ0

(
t

n

)
+

∞∑

k=1

µk

(
t

n

)
ǫ2t−k (4)

where µk(·), k = 0, 1, . . . ,∞ are certain functions of α0(·), αi(·) and βj(·) , i = 1, 2 . . . , p,

j = 1, 2, . . . , q. Under the assumption A1, these functions are non-negative and geomet-

rically decaying. We carry out the estimation of the parameter functions of (1) in two

steps. First, we estimate the functions µk(·), k = 0, 1, . . . , P for a large P and obtain a

preliminary estimate of σ2
t with the help of the following tvARCH (P ) model

ǫ2t = µ0(
t
n
) + µ1(

t
n
)ǫ2t−1 . . .+ µP (

t
n
)ǫ2t−P + σ2

t (v
2
t − 1). (5)
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Here P is such that P = Pn → ∞ as n → ∞. For the derivation of asymptotic properties

of the estimators of tvGARCH parameter functions, we require Pn → ∞. However, the

suffix n is dropped for notational simplicity. We assume that the parameter functions of

(1) possess bounded continuous derivatives upto order (d + 1). Given a kernel function

K(·), a local polynomial estimate of µk(u0), u0 ∈ (0, 1], treating σ2
t (v

2
t − 1) as error in

(5), is defined as

µ̂k(u0) = e⊤

k(d+1)+1,(P+1)(d+1)(X
⊤

1 W 1X1)
−1X⊤

1 W 1Y 1, k = 0, 1, . . . , P

where, X1 = [ZP+1, . . . ,Zn]
⊤, Zt = [U t, ǫ

2
t−1U t, . . . , ǫ

2
t−PU t], t = 1, 2, . . . , n,

U t = [1, (ut − u0), . . . , (ut − u0)
d]1×(d+1), Y 1 = [ǫ2P+1, . . . ǫ

2
n]

⊤ ,

W 1 = diag(Kh1(uP+1 − u0), . . . , Kh1(un − u0)), and Kh1(·) = (1/h1)K(·/h1).

Here and throughout the paper, ut = t/n, h1 denotes the bandwidth of the initial step

estimator and ek,m is a column vector of length m with 1 at the kth position and 0

elsewhere. An initial estimate of σ2
t is obtained by,

σ̂2
t = µ̂0(ut) +

P∑
k=1

µ̂k(ut)ǫ
2
t−k. (6)

For the practical implementation, set ǫ2t = 0, ∀ t ≤ 0. Using this initial estimate of σ̂2
t ,

we obtain the estimates of the parameter functions of (1), which can also be written as

ǫ2t = α0(
t
n
) +

p∑
i=1

αi(
t
n
)ǫ2t−i +

q∑
j=1

βj(
t
n
)σ̂2

t−j −
q∑

j=1
βj(

t
n
)(σ̂2

t−j − σ2
t−j) + σ2

t (v
2
t − 1). (7)

It is shown in Lemmas 1, 2 and 3 (Section 2.1) that for a particular choice of initial step

bandwidth h1 = o(h2), E(σ̂2
t−j − σ2

t−j) is asymptotically negligible, where h2 denotes the

bandwidth in the estimation of the parameter functions of (7). Now, under the (d+ 1)th

order continuous differentiability assumption of the parameter functions, the estimates

can be obtained as

α̂0(u0) = e⊤

1,(p+q+1)(d+1)(X
⊤

2 W 2X2)
−1X⊤

2 W 2Y 2,

α̂i(u0) = e⊤

i(d+1)+1,(p+q+1)(d+1)(X
⊤

2 W 2X2)
−1X⊤

2 W 2Y 2, i = 1, 2, . . . , p

β̂j(u0) = e⊤

(j+p)(d+1)+1,(p+q+1)(d+1)(X
⊤

2 W 2X2)
−1X⊤

2 W 2Y 2, j = 1, 2, . . . , q.

where, X2 = [Z2,r+1, . . . ,Z2,n]
⊤, r = max (p, q),

Z2,t = [U t, ǫ
2
t−1U t, . . . , ǫ

2
t−pU t, σ̂

2
t−1U t, . . . , σ̂

2
t−qU t],
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W 2 = diag(Kh2(ur+1 − u0), . . . , Kh2(un − u0)), and Y 2 = [ǫ2r+1, . . . , ǫ
2
n]

⊤.

In order to construct the bootstrapped local polynomial estimators for the parameter

functions of (1), first consider a sequence of exchangeable random variables {wi}ni=1, inde-

pendent of {ǫt}nt=1. Define WB1 = diag(wP+1, . . . , wn). Then a preliminary bootstrapped

estimator of σ2
t is given by,

σ̂2
Bt = µ̂B0(ut) +

P∑
k=1

µ̂Bk(ut)ǫ
2
t−k.

where µ̂Bk(u0) = e⊤

k(d+1)+1,(P+1)(d+1)(X
⊤

1 WB1W 1X1)
−1X⊤

1 W B1W 1Y 1, k = 0, 1, . . . , P

is a bootstrapped local polynomial estimator of the tvARCH (P ) model. Hence, the

bootstrapped estimators of the parameter functions of tvGARCH (p, q) model can be

written as

α̂B0(u0) = e⊤

1,(p+q+1)(d+1)(X
⊤

B2WB2W 2XB2)
−1X⊤

B2W B2W 2Y 2,

α̂Bi(u0) = e⊤

i(d+1)+1,(p+q+1)(d+1)(X
⊤

B2WB2W 2XB2)
−1X⊤

B2WB2W 2Y 2 and

β̂Bj(u0) = e⊤

(j+p)(d+1)+1,(p+q+1)(d+1)(X
⊤

B2W B2W 2XB2)
−1X⊤

B2WB2W 2Y 2.

where W B2 = diag(wr+1, . . . wn) and XB2 is same as X2 with {σ̂t, t = (r−q+1), . . . , n}
replaced by σ̂2

Bt. In the following section, we show that the bootstrapped estimator has

the same asymptotic distribution as that of the actual estimator.

Remark 1. The bandwidth selection for the estimation of tvGARCH (p, q) model can be

performed using the the cross validation method of Hart (1994). The detailed procedure

is described in RR for the tvGARCH (1, 1) model and can be easily extended to the

tvGARCH (p, q).

2.1 Asymptotics

We denote the convergence in probability to zero and boundedness in probability by oP

and OP respectively. Let PB, EPB
, VPB

, oPB
and OPB

represent the probability, expec-

tation, variance, convergence in probability to zero and boundedness in probability with

respect to the bootstrap distribution conditional on data. Towards deriving the asymp-

totic distributions of the bootstrapped estimators, we first state the following technical

assumptions (A1 − A6)

A1. There exists a δ > 0 such that 0 <
p∑

i=1
αi(u) +

q∑
j=1

βj(u) ≤ 1 − δ, ∀ u ∈ (0, 1] and

sup
u

α0(u) < ∞.
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A2. There exist finite constants M1,M2 and M3 such that ∀ u1, u2 ∈ (0, 1],

|α0(u1)− α0(u2)| ≤ M1|u1 − u2|
|αi(u1)− αi(u2)| ≤ M2|u1 − u2|, i = 1, 2, . . . , p
|βj(u1)− βj(u2)| ≤ M3|u1 − u2|, j = 1, 2, . . . , q.

A3. The functions α0(·), αi(·) and βj(·) (and hence µk(·)) have bounded and continuous

derivatives up to order d+ 1, in a neighborhood of u0, u0 ∈ (0, 1].

A4. K(u) is a symmetric density function of bounded variation with a compact support.

A5. The bandwidths h1 and h2 are such that h1 → 0, h2 → 0 and nh1 → ∞, nh2 → ∞
as n → ∞.

A6. The bootstrap weights {wi} are such that EPB
(wi) = 1, σ2

wn = VPB
(wi) = o(n) and

CorrPB
(wi, wj) = O(1/n) ∀ i 6= j.

It can be proved using similar techniques as in RR and Davis and Mikosch (2009)

that assumption A1 is sufficient for the existence of a well defined unique solution to

the variance process in (1). Also, it ensures the tvGARCH (p, q) to be a short memory

process. The Lipschitz continuity condition A2 on the parameter functions makes the

tvGARCH (p, q) process locally stationary in the sense that it can be approximated by

a stationary GARCH process in the neighborhood of a fixed point. Let {ǫ̃t(u0)}, u0 ∈
(0, 1] be a process with E(ǫ̃t(u0)|F̃t−1) = 0 and E(ǫ̃2t (u0)|F̃t−1) = σ̃2

t (u0) where F̃t−1 =

σ(ǫ̃t−1, ǫ̃t−2, . . .). Then {ǫ̃t(u0)} is said to follow a stationary GARCH process associated

with (1) at time point u0 if it satisfies,

ǫ̃t(u0) = σ̃t(u0)vt,

σ̃2
t (u0) = α0(u0) +

p∑
i=1

αi(u0)ǫ̃
2
t−i(u0) +

q∑
j=1

βj(u0)σ̃
2
t−j(u0).

(8)

It can be shown that tvGARCH (p, q) process can be locally approximated by (8). The

result is stated in the Proposition 1. Assumptions A3 to A5 are standard assumptions for

deriving the asymptotic distributions of local polynomial estimators and are also assumed

by RR. The assumption A6 on the bootstrap weights are the basic conditions assumed by

Chatterjee and Bose (2005, Conditions BW). These conditions are required to establish

the asymptotic distribution of the bootstrapped estimator and are also assumed by Bose

and Mukherjee (2009) for bootstrapping the estimators of stationary ARCH parameters.

An example of weights satisfying these conditions is weights following a Multinomial

(n; 1/n, . . . , 1/n) distribution.
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Proposition 1. Let the assumptions A1 and A2 be satisfied. Then the process {ǫ2t}
can be approximated locally by a stationary ergodic process {ǫ̃2t (u0)}. That is, there exists

a well defined stationary ergodic process Vt independent of u0 and a constant Q < ∞ such

that

|ǫ2t − ǫ̃2t (u0)| ≤ Q
(∣∣∣ t

n
− u0

∣∣∣+ 1
n

)
Vt a.s. (9)

or equivalently

ǫ2t = ǫ̃2t +OP

(∣∣∣ t
n
− u0

∣∣∣+ 1
n

)
.

In the following lemmas, we state the asymptotic distributions of the local polynomial

estimators of the tvARCH (P ) and tvGARCH (p, q) processes discussed in the beginning

of Section 2. Before going to the main results, we first introduce some notations.

Notations.

τk =
∫
ukK(u)du, νk =

∫
ukK2(u)du,

Cj = Cj(u0) = E(ǫ̃2t (u0) ǫ̃
2
t−j(u0)), wj = E(ǫ̃jt(u0)),

S = S(u0) = E
(
[1, ǫ̃2t−1(u0), . . . , ǫ̃

2
t−P (u0)]

⊤[1, ǫ̃2t−1(u0), . . . , ǫ̃
2
t−P (u0)]

)
,

Ω = Ω(u0) = E
(
σ̃4
t (u0)[1, ǫ̃

2
t−1(u0), . . . , ǫ̃

2
t−P (u0)]

⊤[1, ǫ̃2t−1(u0), . . . , ǫ̃
2
t−P (u0)]

)
,

Di = [τd+1, hiτd+2, . . . , h
d
i τ2d+1]

⊤, i = 1, 2,
em = a column vector of length m with 1 everywhere,

Ai =




1 hiτ1 . . . hd
i τd

hiτ1 h2
i τ2 . . . hd+1

i τd+1
...

...
. . .

...
hd
i τd hd+1

i τd+1 . . . h2d
i τ2d



, Bi =




ν0 hiν1 . . . hd
i νd

hiν1 h2
i ν2 . . . hd+1

i νd+1
...

...
. . .

...
hd
i νd hd+1

i νd+1 . . . h2d
i ν2d



,

i = 1, 2.

S2 = E
(
x⊤

t xt

)
,Ω2 = E

(
σ̃4
t (u0)x

⊤

t xt

)
,where

xt = [1, ǫ̃2t−1(u0), . . . ǫ̃
2
t−p(u0), σ̃

2
t−1(u0), . . . , σ̃

2
t−q(u0)].

Lemma 1. Suppose that the assumptions A1 to A5 hold and E|vt|8 < ∞. Then

√
nh1

(
µ̂tvARCH(u0)− µtvARCH(u0)− hd+1

1

(d+1)!
e⊤

1,d+1A
−1
1 D1µ

(d+1)
tvARCH(u0)

)

D→ NP+1

(
0, e⊤

1,d+1A
−1
1 B1A

−1
1 e1,d+1V ar(v2t )S

−1ΩS−1
)

where µ̂tvARCH(u0) and µ
(d+1)
tvARCH(u0) denote the local polynomial estimator and derivative

of order (d+ 1) of µtvARCH(u0) = [µ0(u0), µ1(u0), . . . , µP (u0)]
⊤.

Remark 2. The moment assumption in the Lemma 1, E|vt|8 < ∞ is slightly strong.
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Since, we are dealing with the squared process ǫ2t , we are forced to assume E|vt|8 < ∞ to

ensure the existence of asymptotic variances. However, higher moments are not assumed

for the return process ǫt, but for ǫt/σt, which may be justifiable as both ǫt and σt are of

the same order in ǫt.

Lemma 2. Let σ̂2
t be as defined in (6). Then under the assumptions of Lemma 1,

bias(σ̂2
t ) = E(σ̂2

t − σ2
t ) = OP (h

d+1
1 ) +O(ρPn)

where 0 < ρ < 1 and Pn → ∞ as n → ∞.

Lemma 2 shows that the choice of Pn will contribute towards the bias of the condi-

tional variance in the initial step by a term which decays geometrically. Therefore, this

term will have negligible effect on final estimators as Pn → ∞. Also, if h1 = o(h2), then

the term OP (h
d+1
1 ) = oP (h

d+1
2 ) → 0 as n → ∞ under assumption A5. Thus, the bias in

the first step of estimation of σ2
t is negligible asymptotically.

Now in the following lemma, we show that for a particular choice of the initial step

bandwidth, h1 = o(h2), the effect of the generated regressors in step 1 vanishes. That is,

the local polynomial estimators of the parameter functions of tvGARCH (p, q) in step 2

behave in such a way as if σ2
t−j, j = 1, 2, . . . , q were known.

Lemma 3. Suppose that the assumptions A1 to A5 hold and E|vt|8 < ∞. Further,

let the the bandwidth h2 in the second step of the local polynomial estimation procedure

be such that h1 = o(h2). Then,

√
nh2

(
β̂tvGARCH(u0)− βtvGARCH(u0)− hd+1

2

(d+1)!
e⊤

1,d+1A
−1
2 D2β

(d+1)
tvGARCH(u0)

)

D→ N p+q+1

(
0, e⊤

1,d+1A
−1
2 B2A

−1
2 e1,d+1V ar(v2t )S

−1
2 Ω2S

−1
2

)

where βtvGARCH(u0) = [α0(u0), α1(u0), . . . , αp(u0), β1(u0), . . . , βq(u0)]
⊤.

Thus, if we choose the initial step bandwidth in such a way that h1 = o(h2), then the

bias and variance expressions for the local polynomial estimators are free from the first

step bandwidth. Also, the asymptotic distribution of the parameter functions in step 2

is same as they would have been if σ2
t−j, j = 1, 2, . . . , q were known in (1). This means

that when the optimal bandwidth is used, then the estimation remains unaffected for a
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large choice of initial step bandwidth. This makes the estimation procedure relatively

easy to implement. The MSE of the final estimator is OP (h
2d+2
2 + (nh2)

−1), which is

independent of the initial step bandwidth. Notice that this MSE achieves the optimal

rate of convergence at an order of OP (n
−(2d+2)/(2d+3)) for an optimal bandwidth h2 of

order O(n−1/(2d+3)) and h1 = o(h2).

Evidently, the bias and variance expressions of µ̂tvARCH(u0) and β̂tvGARCH(u0) in

Lemmas 1 and 3 depend on the parameters of the unobservable stationary GARCH

process defined in (8). Therefore, these estimators cannot be directly used for the

construction of confidence intervals and testing of hypothesis. To tackle this, we es-

tablish the asymptotic distributions of the bootstrapped estimators defined in Section

2. Let µ̂B(u0) = [µ̂B0(u0), . . . , µ̂BP (u0)]
⊤ and β̂B = [α̂B0(u0), α̂B1(u0), . . . , α̂Bp(u0),

β̂B1(u0), . . . , β̂Bq(u0)]
⊤ denote the bootstrapped estimators of the parameter functions

of the tvARCH (P ) and tvGARCH (p, q) respectively. In the following theorems, we

establish that the asymptotic distributions of the actual and bootstrapped estimators

coincide. This implies that the properties of the actual local polynomial estimator dis-

cussed above are also true for the bootstrapped estimator.

Theorem 1. Let the assumptions A1 to A6 hold and E|vt|8 < ∞. Then,

σ−1
wn

√
nh1 (µ̂B − µ̂tvARCH(u0))

D→ NP+1

(
0, e⊤

1,d+1A
−1
1 B1A

−1
1 e1,d+1V ar(v2t )S

−1ΩS−1
)
.

Theorem 2. Let the assumptions of Lemma 3 hold along with A6. Then,

σ−1
wn

√
nh2

(
β̂B − β̂tvGARCH(u0)

)
D→ N p+q+1

(
0, e⊤

1,d+1A
−1
2 B2A

−1
2 e1,d+1V ar(v2t )S

−1
2 Ω2S

−1
2

)
.

Comparing the results in Lemma 1 and Theorem 1 and Lemma 3 and Theorem 2, we

can see that the asymptotic distributions of σ−1
wn

√
nh1 (µ̂B − µtvARCH(u0)) and

√
nh1 (µ̂tvARCH − µtvARCH(u0)) as well as those of σ−1

wn

√
nh2

(
β̂B − βtvGARCH(u0)

)
and

√
nh2

(
β̂tvGARCH(u0)− βtvGARCH(u0)

)
are the same. This implies that the bootstrapped

estimator would provide a good approximation to the distribution of the actual tvGARCH

estimators. Thus, with the help of repeated bootstrapped iterations, we can obtain the

approximate empirical biases and variances of the actual estimators. We use these to

construct the confidence bands and the test statistics for testing the constancy of the

parameter functions.
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3 Confidence bands and testing of hypothesis

It is of interest to test whether all or some of the coefficients of the tvGARCH (p, q)

model are constant (possibly equal to zero) or whether they are really time varying. For

instance, if H0 : βj(u) ≡ 0 ∀ j is not rejected, a tvARCH model is more appropriate.

For this purpose, we establish the asymptotic distribution of the supremum of the esti-

mates of parameter functions of the tvARCH and tvGARCH models in Theorems 3 and

4 respectively. These results are also helpful in constructing the confidence bands for the

parameter functions of the tvGARCH model.

Theorem 3. Suppose that the conditions of Lemma 1 are satisfied and h1 = n−b1 for

some 0 < b1 < 1/2. Then

P
[
(−2 log h1)

1/2
{
sup
u

∣∣∣(V ar(µ̂k(u)))
−1/2 (µ̂k(u)− µk(u)− bias(µ̂k(u)))

∣∣∣− dn

}
< z

]

→ exp{−2 exp(−z)}

where

V ar(µ̂k(u)) =
1

nh1

e⊤

1,d+1A
−1
1 B1A

−1
1 e1,d+1V ar(v2t )e

⊤

k,P+1S
−1ΩS−1ek,P+1,

bias(µ̂k(u)) =
hd+1
1

(d+ 1)!
e⊤

1,d+1A
−1
1 D1µ

(d+1)
k (u0)

and

dn = (−2 log h1)
1/2 +

1

(−2 log h1)1/2

(
1

4ν0π

∫
(K ′(t))2dt

)
.

Let β2i(u) denote the i
th element of βtvGARCH(u) = [α0(u), α1(u), . . . , αp(u), β1(u), . . . , βq(u)]

⊤.

Theorem 4. Suppose that the conditions of Lemma 3 are satisfied and h2 = n−b for

some 0 < b < 1/2. Then

P
[
(−2 log h2)

−1/2
{
sup
u

∣∣∣∣
(
V ar(β̂2i(u))

)−1/2 (
β̂2i(u)− β2i(u)− bias(β̂2i(u))

)∣∣∣∣− dn

}
< z

]

→ exp{−2 exp(−z)}

where

V ar(β̂2i(u)) = (1/nh2)e
⊤

1,d+1A
−1
2 B2A

−1
2 e1,d+1V ar(v2t )e

⊤

i,p+q+1S
−1
2 Ω2S

−1
2 ei,p+q+1,

11



bias(β̂2i(u)) =
hd+1
2

(d+ 1)!
e⊤

1,d+1A
−1
2 D2β

(d+1)
2i (u0)

and dn is same as that in Theorem 3 with h1 replaced by h2.

Notice that the asymptotic distributions of the supremums in Theorems 3 and 4 are

similar in spirit to that in the varying coefficient models of Fan and Zhang (2000). How-

ever, the tvGARCH model (1) is different from the usual varying coefficient models due to

its heteroscedasticity and non-stationary behavior. Also, we adopt a two-step estimation

procedure here.

From Theorem 4, we can get (1− α) confidence band for each parameter function of

the tvGARCH model (1) as

β̂2i(u)− bias(β̂2i(u))− zα, β̂2i(u)− bias(β̂2i(u)) + zα, (10)

where

zα = [dn + {log 2− log(− log(1− α)}(−2 log h)1/2]{V ar(β̂2i(u))}1/2.

Here, bias(β̂2i(u)) and V ar(β̂2i(u)) are not known in practice. However, we can replace

them with the bias and variance of the bootstrapped estimator using Theorem 2.

In order to test the hypothesis that a particular coefficient function is equal to a given

constant c, that is, H0 : β2i(u) ≡ c ∀ u ∈ (0, 1], a natural test procedure would be to

check whether the β2i(·) falls in the confidence band (10) or not. The test statistics that

can be used for such a testing problem is

(2 log h)1/2
[
sup
u

{∣∣∣∣
(
V ar(β̂2i(u))

)−1/2 (
β̂2i(u)− c− bias(β̂2i(u))

)∣∣∣∣
}
− dn

]
. (11)

We reject the null hypothesis when the test statistics exceeds the asymptotic critical value

− log(−0.5 log(1 − α)). If c is unknown and the interest is to test the constancy of the

parameter function, then it can be estimated under the null hypothesis. First exploit

the fact that β2i(u) is a constant and estimate the same using two-step local polynomial

procedure with d = 0. Then, obtain an estimate of c by averaging over all t,

ĉ =
1

n

n∑

t=1

β̂2i

(
t

n

)
.

Substitute this estimator of c in (11) and reject the null hypothesis for large values of the

test statistics.

12



Remark 3. Under the conditions of Lemma 3, the bias of the estimator ĉ is OP (h
d+1
2 )

and

V ar(ĉ) = 1
nh2

V ar(v2t )
1
n2

n∑
t=1

e⊤

i,p+q+1S
−1
2 (ut)Ω2(ut)S2(ut)

−1ei,p+q+1 + o(h2
2).

Notice that the covariance term is of order h2d+2
2 .

It may be noted that similar confidence bands and test statistic can be obtained for

the parameter functions in a tvARCH model using Theorem 3.

4 Simulation study

We carried out a simulation study to judge the empirical performance of the bootstrapped

estimator of the parameter functions of tvGARCH model suggested in Section 2. For

computational simplicity, we used the tvGARCH (1,1) model in our simulations. A

sample of size n = 500 was generated from the following model

ǫt = σtvt,

σ2
t = α0

(
t
n

)
+ α1

(
t
n

)
ǫ2t−1 + β

(
t
n

)
σ2
t−1, t = 1, 2, . . . , 500,

(12)

where α0(u) = 2u(1 − u2) + 0.1, α1(u) = 0.2 cos(2πu) + 0.25 and β(u) = 2u(1 − u) +

0.2u3, 0 < u ≤ 1. The parameter functions are chosen in such a way that they satisfy

the assumptions A1 to A3. The local polynomial estimation of the parameter functions

is carried out using the Epanechnikov kernel. The value of P in the first step of the

estimation is taken as log n. Bandwidth is selected using the cross validation method (as

described in RR).

We consider the bootstrap weights to have a multinomial (n, 1/n, . . . , 1/n) distribu-

tion with n = 500. The bootstrapped estimator of the parameter functions was obtained

based on 1000 bootstrap samples. Figure 1 compares the bootstrapped estimator (blue

curve) with the actual estimator (black curve). The red curve in the plot represents the

actual function. Notice that both the estimators of α0(·) are almost similar. However,

the performance of the actual estimator is not as good as the bootstrapped one for the

functions α1(·) and β(·). Especially at the boundaries, the actual estimator is overesti-

mating while the bootstrapped estimator performs well. Notice that the performance of

the estimator at the boundaries of the data is important from the forecasting point of

view.
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To compare the asymptotic properties of the bootstrapped estimator with those of

the actual estimator, 1000 samples were generated, each of size 500 from (12). The lo-

cal polynomial estimators of all the parameter functions are computed for each of these

1000 datasets and point wise means and variances of the estimators are obtained empir-

ically from these samples of size 1000 each. We present the density of the standardized

estimator (blue curve) at three different points (t = 1, 250, 500) in Figure 2. The red

curve in the figure represents the standard normal density. Similarly, the density of the

standardized bootstrapped estimators are plotted along with standard normal density

in Figure 3 at the three points. It is clear from the plots that the distribution of the

bootstrapped estimator is closer to normal than that of the actual estimator. Specially,

at the boundaries (t = 1, 500), the performance of the actual estimator is not good and it

seems to get overestimated for some samples. Notice that a similar phenomenon is also

seen in Figure 1. We also compared the densities of the two estimators at several other

randomly selected time points and the second order performance of the estimators was

found to be more or less similar to that at point t = 250 in Figures 2 and 3.

The 95% confidence bands of the parameter functions based on the methodology

described in Section 3 are depicted in Figure 4. We computed the bias and variance of

the estimator based on 1000 bootstrap samples.

To examine the empirical performance of the test suggested in Section 3, we gener-

ated samples of sizes 500 and 300 from the model (12) with constant parameter functions

α0(u) = 0.5, α1(u) = 0.2 and β(u) = 0.3 ∀ u. The test for the constancy of the parameters

based on the bootstrapped estimator and test statistics (11) as described in Section 3 is

carried out. The empirical probabilities of false rejection based on 1000 samples are given

in Table 1 for different nominal levels. Notice that the empirical probabilities are quite

close to the nominal levels even for a moderate sample size of 300. However, performance

of the test is better in the case of n = 500 than in n = 300. This is quite natural as our

results hold asymptotically.
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Appendix: Outline of proofs

Proof of Proposition 1. The tvGARCH (p, q) model can also be written as a tvARCH

(∞) as represented in (4). Under assumption A2, the parameter functions of the tv-

GARCH (p, q) model and hence µk(·), k = 1, 2, . . . which are simple functions of α0(·), αi(·),
i = 1, 2, . . . , p and βj(·), j = 1, 2, . . . , q are Lipschitz continuous. Therefore, the proposi-

tion follows in the same way as Theorem 1 of Dahlhaus and Rao (2006) who prove the

local stationarity of a tvARCH (∞) process.

To prove Lemma 1, we first state the following auxiliary lemmas which are proved in

RR (Lemmas A.2 and A.4). These lemmas are stated for a general bandwidth h so that

they can be used for both h1 and h2.

Lemma A.1. Let the assumptions A1 to A5 be satisfied. Then

(i)
n∑

k=P+1

1
nh
(uk − u0)

iK
(
uk−u0

h

)
ǫ2lk−j1

ǫ2mk−j2

P→ hiτiE(ǫ̃2lk−j1
(u0)ǫ̃

2m
k−j2

(u0)),

∀ l,m ∈ {0, 1, 2} and j1, j2 ∈ {1, 2, . . . , P}, j1 6= j2

(ii)
n∑

k=P+1

1
nh
(uk − u0)

iK2
(
uk−u0

h

)
σ4
kǫ

2l
k−j1

ǫ2mk−j2

P→ hiνiE(σ̃4
k(u0)ǫ̃

2l
k−j1

(u0)ǫ̃
2m
k−j2

(u0)),
∀ l,m ∈ {0, 1} and j1, j2 ∈ {1, 2, . . . , P},

where (ii) is true for l,m > 0 only if E|vt|8 < ∞.

Lemma A.2. Suppose the assumptions A1 to A5 are satisfied. In addition assume

that E|vt|8 < ∞. Then

V ar

(
n∑

k=P+1
(uk − u0)

iKh(uk − u0)(v
2
k − 1)σ2

k[1, ǫ
2
k−1, . . . , ǫ

2
k−P ]

⊤

)

= nh2i−1ν2iV ar(v2t )Ω(1 + oP (1)), i = 1, 2, . . . , d.

Proof of Lemma 1. To prove the lemma, we first obtain expressions for the asymptotic

bias and variance of the first step estimator. Let us denote

β1 = [µ00, µ01, . . . , µ0d, . . . , µP0, . . . , µPd]
⊤, where µij = µ

(j)
i (·)/j! and µ

(j)
i (·) denotes the

jth derivative of µi(·). Using Taylor’s series expansion, we can write,

Y 1 = X1

[
µ0(u0), µ

(1)
0 (u0), . . .

µ
(d)
0 (u0)

d!
, µ1(u0), . . . , µP (u0), . . .

µ
(d)
P

(u0)

d!

]⊤
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+
1

(d+ 1)!




µ
(d+1)
0 (ζ0(P+1))(uP+1 − u0)

d+1

...

µ
(d+1)
0 (ζ0(n))(un − u0)

d+1




+
1

(d+ 1)!

P∑

j=1




µ
(d+1)
j (ζj(P+1))(uP+1 − u0)

d+1ǫ2P+1−j
...

µ
(d+1)
j (ζj(n))(un − u0)

d+1ǫ2n−j


 +σ2 ∗ (v2 − en−P )

where σ2 = [σ2
P+1, σ

2
P+2, . . . , σ

2
n]

⊤, v2 = [v2P+1, v
2
P+2, . . . , v

2
n]

⊤, ∗ denotes the component

wise product of vectors and ζjk, j = 0, 1, . . . , P, k = P +1, . . . , n are between uk and u0.

Multiplying both sides by (X⊤

1 W 1X1)
−1X⊤

1 W 1,

β̂1(u0) = β1(u0) +
1

(d+ 1)!
(X⊤

1 W 1X1)
−1X⊤

1 W 1

×




µ
(d+1)
0 (ζ0(P+1))(uP+1 − u0)

d+1

...

µ
(d+1)
0 (ζ0(n))(un − u0)

d+1


+

1

(d+ 1)!

P∑

j=1

(X⊤

1 W 1X1)
−1X⊤

1 W 1

×




µ
(d+1)
j (ζj(P+1))(uP+1 − u0)

d+1ǫ2P+1−j
...

µ
(d+1)
j (ζj(n))(un − u0)

d+1ǫ2n−j


+ (X⊤

1 W 1X1)
−1X⊤

1 W 1(σ
2 ∗ (v2 − en−P )).

(13)

Now it is not difficult to show using Lemma A.1 (i) that

X⊤

1 W 1




µ
(d+1)
0 (ζ0(P+1))(uP+1 − u0)

d+1

...

µ
(d+1)
0 (ζ0(n))(un − u0)

d+1




= nhd+1
1 µ

(d+1)
0 (u0)[1, e

⊤

Pw2]
⊤(1 + oP (1))⊗D1,

X⊤

1 W 1




µ
(d+1)
j (ζj(P+1))(uP+1 − u0)

d+1ǫ2P+1−j
...

µ
(d+1)
j (ζj(n))(un − u0)

d+1ǫ2n−j




= nhd+1
1 µ

(d+1)
j (u0)[w2, Cj−1, . . . , Cj−P ]

⊤(1 + oP (1))⊗D1,

and,

(X⊤

1 W 1X1)
−1 = (1/n)S−1(1 + oP (1))⊗A−1

1 .

Hence, the asymptotic bias is given as,

E(β̂1(u0)− β1(u0))

=
hd+1
1

(d+1)!

(
µ
(d+1)
0 (u0)(S

−1 ⊗A−1
1 )[(1, w2e

⊤

P ]
⊤ ⊗D1)

+
P∑

j=1
µ
(d+1)
j (u0)(S

−1 ⊗A−1
1 )([w2, Cj−1, . . . , Cj−P ]

⊤ ⊗D1)
)
+ oP (h

d+1
1 ).
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Notice that C0 = w4. Now

E(β̂1(u0)− β1(u0))

=
hd+1
1

(d+1)!
(S−1 ⊗A−1

1 )
((
µ
(d+1)
0 (u0)[1, w2e

⊤

P ]
⊤

+
P∑

j=1
µ
(d+1)
j (u0)[w2, Cj−1, . . . , Cj−P ]

⊤

)
⊗D1

)
+ oP (h

d+1
1 )

=
hd+1
1

(d+1)!
(S−1 ⊗A−1

1 )
(
S[µ

(d+1)
0 (u0), µ

(d+1)
1 (u0), . . . , µ

(d+1)
P (u0)]

⊤ ⊗D1

)

+ oP (h
d+1
1 )

=
hd+1
1

(d+1)!

(
[µ

(d+1)
0 (u0), µ

(d+1)
1 (u0), . . . , µ

(d+1)
P (u0)]

⊤ ⊗A−1
1 D1

)
+ oP (h

d+1
1 )

Notice that Bias (µ̂j(u0))= e⊤j(d+1)+1,(P+1)(d+1) Bias (β̂1(u0)). Hence the bias expression

is obtained.

Now the asymptotic variance is

V ar(β̂1(u0))
= (1/n)(S−1(1 + oP (1))⊗A−1

1 )V ar(X⊤

1 W 1(σ
2 ∗ (v2 − en−P )))

× (1/n)(S−1(1 + oP (1))⊗A−1
1 ).

= (1/n)(S−1(1 + oP (1))⊗A−1
1 )((n/h1)V ar(v2t )Ω(1 + oP (1))⊗B1)

× (1/n)(S−1(1 + oP (1))⊗A−1
1 ).

using Lemma A.2. The desired expression for the variance can be obtained after some

simplification using the properties of Kronecker product. The asymptotic normality fol-

lows using the Martingale central limit theorem.

Proof of Lemma 2. It is clear from Lemma 1 that the bias of µ̂k(u0) is OP (h
d+1
1 ).

Also, the parameter functions µk(·) are geometrically decaying. Hence using the expres-

sions (4) and (6), the lemma follows.

To prove Lemma 3, we state the following lemma which is similar to Lemma A.2.

Lemma A.3. Under the same assumptions as in Lemma 3,

V ar

(
n∑

k=p+1
(uk − u0)

iKh2(uk − u0)(v
2
k − 1)σ2

k[1, ǫ
2
k−1, . . . , ǫ

2
k−pσ̂

2
k−1, . . . , σ̂

2
k−q]

)

= nh2i−1
2 ν2iV ar(v2t )Ω2(1 + oP (1)), i = 1, 2, . . . , d.

Proof of Lemma 3. Denote

β2 = (α00, α01, . . . , α0d, α10, . . . , α1d, αp0, . . . , αpd, β10, . . . , β1d, βq0, . . . , βqd), where α00, . . . , βqd

are constants. Using Taylor’s series expansion in (7),

β̂2(u0) = β2(u0) +
1

(d+ 1)!
(X⊤

2 W 2X2)
−1X⊤

2 W 2




α
(d+1)
0 (ξ0,r+1)(ur+1 − u0)

d+1

...

α
(d+1)
0 (ξ0,n)(un − u0)

d+1



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+
1

(d+ 1)!
(X⊤

2 W 2X2)
−1X⊤

2 W 2

p∑

i=1




α
(d+1)
i (ξi,r+1)(ur+1 − u0)

d+1ǫ2r+1−i
...

α
(d+1)
i (ξi,n)(un − u0)

d+1ǫ2n−i




+
1

(d+ 1)!
(X⊤

2 W 2X2)
−1X⊤

2 W 2

q∑

j=1




β
(d+1)
j (ξj,r+1))(ur+1 − u0)

d+1σ̂2
r+1−j

...

β
(d+1)
j (ξj,n)(un − u0)

d+1σ̂2
n−j




+oP (h
d+1
2 ) + (X⊤

2 W 2X2)
−1X⊤

2 W 2(σ
2
2 ∗ (v2

2 − en−r)),

where ξ0,t, ξi,t and ξj,t are between ut and u0. Here v2
2 = [v2r+1, . . . , v

2
n]

⊤ and σ2
2 =

[σ2
r+1, . . . , σ

2
n]

⊤. Notice that the bias of σ̂2
t−j in (7) is oP (h

d+1
2 ) using Lemma 2 and the

assumption h1 = o(h2). We ignore the term O(ρpn) as it is negligible asymptotically. In

a similar way as in the proof of Lemma 1, it can be seen that

X⊤

2 W 2




α
(d+1)
0 (ξ0,r+1)(ur+1 − u0)

d+1

...

α
(d+1)
0 (ξ0,n)(un − u0)

d+1




= nhd+1
2 α

(d+1)
0 (u0)E[xt]

⊤(1 + oP (1))⊗D2,

X⊤

2 W 2




α
(d+1)
i (ξi,r+1))(ur+1 − u0)

d+1ǫ2r+1−i
...

α
(d+1)
i (ξi,n)(un − u0)

d+1ǫ2n−i




= nhd+1
2 α

(d+1)
i (u0)E[ǫ̃2t−ixt]

⊤(1 + oP (1))⊗D2,

X⊤

2 W 2




β
(d+1)
j (ξj,r+1))(ur+1 − u0)

d+1σ̂2
r+1−j

...

β
(d+1)
j (ξj,n)(un − u0)

d+1σ̂2
n−j




= nhd+1
2 β

(d+1)
j (u0)E[σ̃2

t−jxt]
⊤(1 + oP (1))⊗D2

and

(X⊤

2 W 2X2)
−1 = (1/n)S−1

2 (1 + oP (1))⊗A−1
2 .

Therefore,

Bias(β̂2(u0))

=
hd+1
2

(d+1)!
(S−1

2 (1 + oP (1))⊗A−1
2 )

((
α
(d+1)
0 (u0)E[xt]

⊤

+
p∑

i=1
α
(d+1)
i (u0)E[ǫ̃2t−ixt]

⊤ +
q∑

j=1
β
(d+1)
j (u0)[σ̃

2
t−jxt]

⊤

)
(1 + oP (1))⊗A−1

2 D2

)
+ oP (h

d+1
2 )

=
hd+1
2

(d+1)!
(S−1

2 ⊗A−1
2 )

(
(S2[α

(d+1)
0 (u0), α

(d+1)
1 (u0), . . . , α

d+1
p (u0), β

(d+1)
1 (u0), . . . , β

d+1
q (u0)]

⊤)⊗D2

)

+ oP (h
d+1
2 )

=
hd+1
2

(d+1)!
[α

(d+1)
0 (u0), α

(d+1)
1 (u0), . . . , α

d+1
p (u0), β

(d+1)
1 (u0), . . . , β

d+1
q (u0)]

⊤ ⊗A−1
2 D2 + oP (h

d+1
2 ).
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The bias expressions can be obtained by using

Bias(α̂0(u0)) = e⊤1,(p+q+1)(d+1)Bias(β̂2(u0)), Bias(α̂i(u0)) = e⊤i(d+1)+1,(p+q+1)(d+1)Bias(β̂2(u0))

and Bias(β̂j(u0)) = e⊤(i+j)(d+1)+1,(p+q+1)(d+1)Bias(β̂2(u0)).

Now using Lemma A.3

V ar(β̂2(u0)) = (1/n)S−1
2 (1 + oP (1))⊗A−1

2 V ar(X⊤

2 W 2(σ
2
2 ∗ (v2

2 − en−r)))
× (1/n)S−1

2 (1 + oP (1))⊗A−1
2

= 1
nh2

V ar(v2t )(S
−1
2 ⊗A−1

2 )(Ω2 ⊗B2)(S
−1
2 ⊗A−1

2 )(1 + oP (1)).

The variance expression given in Lemma 3 can be arrived at after some simplification.

The asymptotic normality follows using the martingale central limit theorem.

To prove Theorems 1 and 2, we state the following lemma, which can be proved using

(9) in a similar way as Lemma A.1.

Lemma A.4. Suppose that the assumptions A1 to A4 and A6 hold. Let h denote a

bandwidth such that h → 0 and nh → ∞ as n → ∞. Then
n∑

k=P+1

1
nh
(uk − u0)

iK
(
uk−u0

h

)
wkǫ

2l
k−j1

ǫ2mk−j2

PB→ hiτiE(ǫ̃2lk−j1
(u0)ǫ̃

2m
k−j2

(u0)),

∀ l,m ∈ {0, 1, 2} and ∀ j1, j2, j1 6= j2, i = 0, 1, 2 . . . , 2d.

Proof of Theorem 1. Let

eP+1 =




e⊤

1,(P+1)(d+1)

e⊤

(d+1)+1,(P+1)(d+1)
...
e⊤

P (d+1)+1,(P+1)(d+1)




(P+1)×(P+1)(d+1)

.

Then

σ−1
wn

√
nh1 (µ̂B − µtvARCH(u0))

= eP+1σ
−1
wn

√
nh1(X

⊤

1 WB1W 1X1)
−1X⊤

1 WB1W 1(Y 1 −X1βB1(u0)),

where βB1(u0) = [µ0(u0), µ
(1)
0 (u0), . . . ,

1
d!
µ
(d)
0 (u0), . . . ,

1
d!
µ
(d)
P (u0)]

⊤. Now, using Lemma

A.4, it can be shown that

1

n
X⊤

1 WB1W 1X1 =
1

nh1

n∑

k=P+1

K
(
uk − u0

h1

)
wkZkZ

⊤

k = S ⊗A1 (1 + oPB
(1)) .

Using the Taylor’s series expansion of order d+ 1 for each parameter function in (5), we

can write

σ−1
wn

√
h1/nX

⊤

1 WB1W 1(Y 1 −X1βB1(u0))

= σ−1
wn

√
nh1

n∑
k=P+1

1
nh1

K
(
uk−u0

h1

)
wkZ

⊤

k σ
2
k(v

2
k − 1) + σ−1

wn

√
nh1OPB

(hd+1
1 ),
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where the second term in the above expression is due to the remainder in the Taylor’s

series expansion. It can be shown in a similar way as Lemma A.2 that the bootstrap

variance of each element of the first term goes to zero. Therefore

σ−1
wn

√
h1/nX

⊤

1 W B1W 1(Y 1 −X1βB1(u0)) = oPB
(1) + σ−1

wn

√
nh1OPB

(hd+1
1 ).

Notice that under the assumption A6, σ
2
wn = o(n). Therefore

σ−1
wn

√
nh1 (µ̂B − µtvARCH(u0)) = σ−1

wn

√
nh1OPB

(hd+1
1 ) + oPB

(1).

Now,

σ−1
wn

√
nh1 (µ̂B − µ̂tvARCH(u0))

= σ−1
wn

√
nh1 (µ̂B − µtvARCH(u0))− σ−1

wn

√
nh1 (µ̂tvARCH(u0)− µtvARCH(u0))

= σ−1
wn

√
nh1(OPB

(hd+1
1 )−OP (h

d+1
1 )) + oPB

(1),

using Lemma 1. Rest of the theorem can be easily proved.

Proof of Theorem 2. Let yt = [1, ǫ2t−1, . . . , ǫ
2
t−P ]

⊤. Then we can write as n → ∞

σ̂2
Bt = µ̂⊤

Byt =

(
µtvARCH +

hd+1
1

(d+ 1)!
e⊤

1,d+1A
−1
1 D1µ

(d+1)
tvARCH(u0)

)⊤

yt.

Since the parameter functions µk(·) are geometrically decaying, we can write using (4),

for some 0 < ρ < 1,

σ̂2
Bt − σ2

t = OPB
(hd+1

1 ) +OP (ρ
Pn).

Using this and Lemma A.4, it can be shown that

1

n
X⊤

B2WB2W 2XB2 = S2 ⊗A2 (1 + oPB
(1)) .

Let βB2(u0) = [α0(u0), α
(1)
0 (u0), . . . ,

1
d!
α
(d)
0 (u0), α1(u0), . . . ,

1
d!
β(d)
q (u0)]

⊤. Then using Taylor

series expansion of all the parameter functions in (7), we can write

σ−1
wn

√
h2/nX

⊤

B2WB2W 2(Y 2 −XB2βB2(u0))

= σ−1
wn

√
nh2

n∑
k=P+1

1
nh2

K
(
uk−u0

h2

)
wkZ

⊤

Bkσ
2
k(v

2
k − 1) + σ−1

wn

√
nh2OPB

(hd+1
2 )

−
q∑

j=1
βj

(
t
n

) (
OPB

(hd+1
1 ) +OP (ρ

Pn)
)
,

where ZBk = [U k, ǫ
2
k−1U k, . . . , ǫ

2
k−pU k, σ̂

2
Bk−1U k, . . . , σ̂

2
Bk−qU k]

⊤. Here the first term can

be shown to converge to zero in probability, second term is due to the remainder term in
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Taylor series expansion and the third term is due to the bias of initial estimation of σ2
t .

If the initial step bandwidth is chosen in such a way that h1 = o(h2), then the last term

can be ignored and

σ−1
wn

√
h2/nX

⊤

B2WB2W 2(Y 2 −XB2βB2(u0)) = σ−1
wn

√
nh2OPB

(hd+1
2 ) + oPB

(1).

The rest of the theorem can be proved in a similar way as in Theorem 1.

Proof of Theorem 3. Denote σ2 = [σ2
P+1, . . . , σ

2
n] and similarly v2 = [v2P+1, . . . , v

2
n].

Notice that

(µ̂k(u)− µk(u)− bias(µ̂k(u))) = e⊤

k(d+1)+1,(P+1)(d+1)(X
⊤

1 W 1X1)
−1X⊤

1 W 1σ
2 ∗ (v2 − 1),

where * denotes the element-wise product of vectors. It can be shown that

1

n
X⊤

1 W 1X1
P→ S ⊗A1.

Therefore,

(X⊤

1 W 1X1)
−1X⊤

1 W 1σ
2(v2 − 1)

= (1/n)(S−1(1 + oP (1))⊗A−1
1 )

n∑
i=P+1

yi ⊗U iσ
2
i (v

2
i − 1)Kh(ui − u0),

where yi = [1, ǫ2i−1, . . . , ǫ
2
i−P ]

⊤. Using (9) and ignoring the terms of order (1/n2), we can

write

(1/n)
n∑

i=P+1
yi ⊗U iσ

2
i (v

2
i − 1)Kh(ui − u0) = (1/n)

n∑
i=P+1

ỹi ⊗U iσ̃
2
i (v

2
i − 1)Kh(ui − u0)

+ (1/n)
n∑

i=P+1
OP

(∣∣∣ i
n
− u0

∣∣∣+ 1
n

)
(v2i − 1)Kh(ui − u0).

Here ỹi = [1, ǫ̃2i−1, . . . , ǫ̃
2
i−P ]

⊤. We drop (u0) from the notations of stationary pro-

cesses for simplicity. The second term converges to zero in probability. Now, sup-

pose that Fn,v2,z(v
2, z) denotes the empirical distribution function of {ǫ2t/σ̂2

t , zt} where

zt = [ǫ2t−1, . . . ǫ
2
t−P ]

⊤. Let F (v2, z̃) denote the joint distribution function of {v2t , z̃t} where

z̃t = [ǫ̃2t−1, ǫ̃
2
t−2, . . . , ǫ̃

2
t−P ]. Then using (9), it can be easily shown that Fn,v2,z(v

2, z)
P→

F (v2, z̃). We can write

n−1X⊤

1 W 1σ
2(v2 − 1) =

∫

v2,z̃,u

ỹ ⊗U σ̃2(v2 − 1)Kh(u− u0)dFn,v2,z(v
2, z̃)du.

Let Zn =
√
n(Fn,v2,z(v

2, z)− F (v2, z̃)) denote the empirical process of {v2t , z̃t}. Then,

n−1X⊤

1 W 1σ
2(v2 − 1) = (n−3/2)

∫

v2,z̃,u

ỹ ⊗U σ̃2(v2 − 1)Kh(u− u0)dZn(v
2, z̃)du.
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Here, the remaining term vanishes as E(v2t − 1) = 0. Let B(v2, z̃) denote the Brownian

bridge based on the uniform measure on [0, 1]P+1. Then,

n−1X⊤

1 W 1σ
2(v2 − 1) = (n−3/2)

∫

v2,z̃,u

ỹ ⊗U σ̃2(v2 − 1)Kh(u− u0)dB(v2, z̃)du+ ηn,

where

ηn = (n−3/2)
∫

v2,z̃,u

ỹ ⊗U σ̃2(v2 − 1)Kh(u− u0)
[
dZn(v

2, z̃)− dB(v2, z̃)
]
du.

Therefore,

(X⊤

1 W 1X1)
−1X⊤

1 W 1σ
2(v2 − 1) = (n−3/2)(S−1(1 + oP (1))⊗A−1

1 )

×
∫

v2,z̃,u

ỹ ⊗U σ̃2(v2 − 1)Kh(u− u0)dB(v2, z̃)du+ n−1(S−1(1 + oP (1))⊗A−1
1 )ηn.

Now, using a similar arguments as in Lemma 3 of Gruet (1996), it can be shown that the

second term is negligible in the above expression. Considering (k(d + 1) + 1)th element

of this vector, we have

e⊤

k(d+1)+1,(P+1)(d+1)(X
⊤

1 W 1X1)
−1X⊤

1 W 1σ
2 ∗ (v2 − 1)

= n−3/2
∫

v2,z̃,u

(
e⊤

k,P+1S
−1(1 + oP (1))ỹ

) (
e⊤1,d+1A

−1
1 U

)
σ̃2(v2 − 1)Kh(u− u0)dB(v2, z̃)du

.

Rest of the theorem can be argued in a similar way as in Gruet (1996, Lemma 3), Hardle

(1989) and Bickel and Rosenblatt (1973) using some algebraic adjustments and the fact

that

V ar(µ̂k(u)) =
1

nh1

e⊤

1,d+1A
−1
1 B1A

−1
1 e1,d+1V ar(v2t )e

⊤

k,P+1S
−1α0S

−1ek,P+1.

Proof of Theorem 4. This proof can be formulated in a similar way as in Theorem

3. The bias in the estimation of σ2
t in the first step is negligible under the assumption

h1 = o(h2). Details are omitted.
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Table 1. Empirical probabilities of false rejection

n = 500 n = 300
Confidence level 0.01 0.05 0.1 0.01 0.05 0.1
H0 : α0(·) = c 0.009 0.064 0.120 0.006 0.076 0.156
H0 : α(·) = c 0.007 0.061 0.114 0.012 0.036 0.051
H0 : β(·) = c 0.003 0.056 0.105 0.002 0.052 0.114
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Figure 1. Plot of bootstrapped (blue) and actual (black) estimators along with the
parametric function (red)
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Figure 2. Densities of the actual estimator (blue) at various time points along with the
standard normal density (red)
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Figure 3. Densities of the bootstrapped estimator (blue) at various time points along
with the standard normal density (red)
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Figure 4. 95% confidence bands for the parameter functions
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