
Connection between F-frames L and 
flat R(L)- modules 

Technical Report No: ISINE/ASD/AOSU/2013-14/004 
Report Date: 29.04.2013 

S. K. Acharyya 
Department of Pure Mathematics 

University of Calcutta 
35, Ballygaunge Circular Road. Calcutta- 700019, W.B., INDIA 

Email: sdpacharyya@gmail.com 

G. Bhunia 
Department of Pure Mathematics 

University of Calcutta 
35, Ballygaunge Circular Road. Calcutta- 700019, W.B., INDIA 

Email: bhunia.goutam72@gmail.com 

Partha Pratim Ghosh 
Indian Statistical Institute, North East Centre, 

Tezpur University Campus, Tezpur-784028, Assam , INDIA 
Email: partha@isine.ac.in 

Indian Statistical Institute 
North-East Centre, Tezpur, Assam-784028

mailto:sdpacharyya@gmail.com
mailto:bhunia.goutam72@gmail.com
mailto:partha@isine.ac.in


Connection between F -frames L and flat R(L)-modules

S. K. Acharyya, G. Bhunia, and Partha Pratim Ghosh

Abstract. In this paper we have shown that, a frame L is an F -frame if

and only if every ideal of R(L) is flat if and only if every submodule of a free

R(L)-module is flat.

1. Introduction

The main intention of this article is to establish the pointfree analogue of the
results: (1) X is an F -space if and only if every ideal of C(X) is flat, (2) X is an
F -space if and only if every submodule of a free C(X)-module is flat; obtained by
C. W. Neville [6], in 1989. For this purpose, we need the following notations and
definitions.

Notation 1. We shall use throughout the paper: (1) the product of two
elements f, g ∈ R(L) is denoted by fg, (2) for an R(L)-module A, the operation
R(L) × A → A is denoted by ‘.’ and the image of an element (r, a) under this
operation is denoted by r.a and (3) modules means modules over the ring R(L).

Definition 1.1. A frame L is called an F -frame, if any two disjoint cozero
elements are completely separated i.e. for any f, g ∈ R(L) with cozf ∧ cozg = 0,
there exists k ∈ R(L) such that cozf ∧ cozk = 0 and cozg ∧ coz(1 − k) = 0. For
details about these frames see [1] and [4].

Definition 1.2. A frame L is called a P -frame, if for any f ∈ R(L), cozf ∨
(cozf)∗ = 1. For details about these frames see [1] and [3].

Definition 1.3. A frame L is called basically disconnected, if for any f ∈ R(L),
(cozf)∗ ∨ (cozf)∗∗ = 1. For details about these frames see [1].

Definition 1.4. Let f, g ∈ R(L). Then we define, f = 0 on supp(g) =↑ (cozg)∗

if cozf ≤ (cozg)∗ equivalently if fg = 0.

Definition 1.5. Let A be a submodule of a free R(L)-module, a, b ∈ A and
r ∈ R(L). Then we define, a = 0 on supp(r) if πα(a) = 0 on supp(r), for each
α ∈ I (since A is a submodule of a free R(L)-module say,

∐
α∈I R(L), for some

index set I, and
∐
α∈I R(L) is a submodule of

∏
α∈I R(L), we can consider the

natural projections πα’s from A into R(L)), and so rπα(a) = πα(r.a) = 0, for each
α ∈ I, i.e. r.a = 0.
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Definition 1.6. A R(L)-module A is called quasi-torsion-free relative to the
exact sequence of R(L)-modules

0 // K // F
β // A // 0

where F is a flat submodule of a freeR(L)-module, if the following is true: whenever
r.a = 0 with r ∈ R(L) and a ∈ A, then there exists b ∈ F and k ∈ K such that
β(b) = a and b = k on supp(r) (or equivalently r.b = r.k).

For undefined algebraic terminologies, we refer the Rotman’s book [8] and for
general theory of frames and pointfree rings of all real valued continuous functions
on them, we refer [1], [2] and [7].

2. Main Results

Lemma 2.1. Let f, g ∈ R(L) be such that, for any k ∈ R(L), k = 0 on supp(f)
implies k = 0 on supp(g). Then supp(g) ⊆ supp(f).

Proof. We have to show that supp(g) ⊆ supp(f) equivalently (cozf)∗ ≤
(cozg)∗. If not, then by the complete regularity of L, there exists k ∈ R(L) such
that cozk ≤ (cozf)∗ but cozk � (cozg)∗, contradicts our hypothesis. �

Theorem 2.2. L is an F -frame if and only if every finitely generated ideal of
R(L) is flat.

Proof. To prove the theorem, we need a lemma:

Lemma 2.3. Let R be a ring. Suppose

0 // K // F
β // B // 0

is an exact sequence of R-modules, where F is flat. If B is flat, then K ∩FI = KI
for every ideal I of R. Conversely, if K ∩ FI = KI for every finitely generated
ideal of R, then B is flat.

Proof. See [8, Theorem 3.37]. �

First suppose that L is an F -frame. Let I be a finitely generated ideal of R(L).
Since L is an F -frame, I = 〈f〉 for some f ∈ R(L) (see [4, Proposition 3.2]). Now
it can be easily checked that

0 // K // R(L)
φ // I // 0

is an exact sequence of R(L)-modules, where K = {k ∈ R(L) : kf = 0} and
φ(g) = fg, g ∈ R(L). Let J be another finitely generated ideal. Then J is also
principal and so J = 〈r〉 for some r ∈ R(L). We shall show that K ∩ J = KJ .
Firstly, KJ ⊆ K ∩ J always, so we must show that K ∩ J ⊆ KJ . Let gr ∈ K with
g ∈ R(L). Then grf = 0 and so coz(fg) ∧ cozr = 0. Therefore coz(fg) and cozr
are disjoint cozero element of L, also since L is an F -frame, they are completely
separated (see [1, Proposition 8.4.10]). Hence there exists h ∈ R(L) such that
coz(fg) ∧ cozh = 0 and cozr ∧ coz(1− h) = 0. First equality ensures that gh ∈ K
and second ensures that gr = ghr ∈ KJ . Therefore by the above lemma, we can
conclude that I is flat.
Conversely suppose that every finitely generated ideal of R(L) is flat. To show
that L is an F -frame, it is sufficient to show that disjoint cozero elements of L
are completely separated (see [1, Proposition 8.4.10]). Let cozf ∧ cozr = 0 with
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f, r ∈ R(L). Consider the principal ideals I = 〈f〉, J = 〈r〉 and the exact sequence

0 // K // R(L)
φ // I // 0

with K = {k ∈ R(L) : kf = 0} and φ(g) = fg, g ∈ R(L). Then, since I is flat
we have, K ∩ J = KJ by the above lemma. Since K is an ideal of R(L), for any
gr ∈ K, gr = kr for some k ∈ K. In particular, being r ∈ K, as rf = 0, there
exists k ∈ K such that r = kr. So cozf ∧ cozk = 0 and cozr ∧ coz(1− k) = 0 and
hence cozf and cozr are completely separated by k. �

Also from an well known result (see [8, Corollary 3.31]) about flatness is that
a module B is flat if every finitely generated submodule is flat. Thus we have:

Corollary 2.4. L is an F -frame if and only if every ideal of R(L) is flat.

From the proof of Theorem 2.2, we also have:

Corollary 2.5. L is an F -frame if and only if every principal ideal of R(L)
is flat.

We know from an another well known result (see [8, Theorem 4.24]): For any
ring R, every R-module is flat if and only if R is von Neumann regular; we obtain
the following result:

Theorem 2.6. L is a P -frame if and only if every R(L)-module is flat.

Proof. Since we know that, L is a P -frame if and only if R(L) is a von
Neumann regular ring (see [3, Proposition 3.9]). �

Lemma 2.7. If a R(L)-module is quasi-torsion-free relative to one exact se-
quence, it is quasi-torsion-free relative to every exact sequence.

Proof. To prove the lemma we need the following lemma:

Lemma 2.8. Consider the commutative diagram of exact sequences of R(L)-
modules

0 // K1

��

// F1

σ

��

β1 // A

iA

��

// 0

0 // K2
// F2

β2

// A // 0

where F1 and F2 are flat submodules of free modules. If A is quasi-torsion-free
relative to the top exact sequence, it is quasi-torsion-free relative to the bottom
exact sequence. If σ is onto and A is quasi-torsion-free relative to the bottom exact
sequence, then A is quasi-torsion-free relative to the top exact sequence.

Proof. First suppose that A is quasi-torsion-free relative to the top exact se-
quence. Let r.a = 0 with r ∈ R(L) and a ∈ A. Then a = 0 on supp(r) =↑ (cozr)∗

relative to the top exact sequence and so there exists f1 ∈ F1 and k1 ∈ K1 such
that β1(f1) = a and f1 = k1 on supp(r) i.e. r.f1 = r.k1. Take f2 = σ(f1),
k2 = σ(k1). Then β2(f2) = (β2oσ)(f1) = β1(f1) = a and f2 = k2 on supp(r)
indeed: r.f2 = r.σ(f1) = σ(r.f1) = σ(r.k1) = r.σ(k1) = r.k2.
Now suppose that σ is onto and A is quasi-torsion-free relative to the bottom exact
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sequence. Consider the exact sequence

0 // K3
// F1

σ // F2
// 0

and note that K3 ∩ F1I = K3I for every ideal I of R(L), by Lemma 2.3. Let
r.a = 0 with r ∈ R(L) and a ∈ A. Then there exists f2 ∈ F2 and k2 ∈ K2 such
that β2(f2) = a and r.f2 = r.k2. Since σ is onto, there exists f1 ∈ F1 and k1 ∈ K1

such that σ(f1) = f2 and σ(k1) = k2. Therefore, β1(f1) = (β2oσ)(f1) = β(f2) = a
and σ(r.(f1 − k1)) = r.f2 − r.k2 = 0 implies r.(f1 − k1) ∈ K3 ∩ F1〈r〉 = K3〈r〉. So,
there exists k3 ∈ K3 such that r.(f1 − k1) = r.k3 i.e. r.f1 = r.(k1 + k3). But, since
β1 = β2oσ, K3 ⊆ K1 and hence (k1 + k3) ∈ K1. So A is quasi-torsion-free relative
to the top exact sequence. �

Now, if A is quasi-torsion-free with respect to an exact sequence with the mid-
dle term free then, since every free module is projective as well as flat, by the first
part of the above lemma, A is quasi-torsion-free with respect to every exact se-
quence. Also, if A is quasi-torsion-free with respect to some exact sequence (as in
Definition 1.6) then, since every module is a quotient of a free module F1 we have
an onto map σ : F1 → F and an exact sequence

0 // K1
// F1

β1 // A // 0

by letting β1 = βoσ and K1 = ker(β1). Therefore by the second part of the above
lemma, we can conclude that A is quasi-torsion-free with respect to this exact
sequence with the middle term free. Hence the proof of Lemma 2.7 is complete.

�

Theorem 2.9. Let L be an F -frame. Then an R(L)-module is flat if and only
if it is quasi-torsion-free.

Proof. The ‘only if ’ part of the above theorem holds for any frame L and the
‘if ’ part holds for F -frames L.
Let A be a flat R(L)-module and consider the exact sequence (as in Definition 1.6).
So by Lemma 2.3, K ∩ FI = KI, for any ideal I of R(L). Now, let r.a = 0 with
r ∈ R(L) and a ∈ A. Since β is onto there exists b ∈ F such that β(b) = a and so,
0 = r.a = r.β(b) = β(r.b). Therefore, r.b ∈ K ∩ F 〈r〉 = K〈r〉 implies there exists
c ∈ K such that r.b = r.c i.e. b = c on supp(r) and hence A is quasi-torsion-free.
Conversely suppose that, L is quasi-torsion-free with respect to the exact sequence
(as in Definition 1.6). To show A is flat, it is sufficient to show from Lemma 2.3
that, K ∩ FI = KI for all principal ideal I of R(L) as L is an F -frame. Let
I = 〈r〉, r ∈ R(L) and r.b ∈ K with b ∈ F . Then 0 = β(r.b) = r.β(b) and hence by
hypothesis, there exists b1 ∈ F and c1 ∈ K such that β(b) = β(b1) (so, (b−b1) ∈ K)
and b1 = c1 on supp(r) i.e. r.b1 = r.c1. Now, r.b = r.(b−b1+b1) = r.(b−b1)+r.b1 =
r.(b− b1) + r.c1 = r.((b− b1) + c1) implies that r.b ∈ KI as ((b− b1) + c1) ∈ K. So,
K ∩ FI = KI. �

Semi-hereditary rings have the property that every finitely generated submod-
ule of a free module is a direct sum of finitely many finitely generated ideals (see
[8, Theorem 4.13]). Also we have proved in a paper “Concerning finite frames, P -
frames and basically disconnected frames”, communicated in a journal in January
2013 that, a frame L is basically disconnected if and only if R(L) is a coherent ring
and hence if and only if R(L) is a semi-hereditary ring, as R(L) is an uniformly
complete, Archimedean, f -algebra with unit (see[6], Theorem 3). So we have the
following theorem:



CONNECTION BETWEEN F -FRAMES L AND FLAT R(L)-MODULES 5

Theorem 2.10. Let L be basically disconnected. Then every finitely generated
submodule of a free R(L)-module is a direct sum of finitely many finitely generated
ideals.

Theorem 2.11. L is an F -frame if and only if every finitely generated sub-
module of a free R(L)-module is flat.

Proof. To prove this theorem we need the following lemma:

Lemma 2.12. Let L be a frame and A be a submodule of
∐
j∈K R(L). Let

πj be the canonical projection map onto the j-th coordinate, and assume the ideal
πn(A) = In is principal with generator fn ∈ R(L). Then the exact sequence

0 // Kn
// A

πn // In // 0

splits if and only if there exists an ∈ A with πn(an) = fn and supp(πj(an)) ⊆
supp(fn), for all j ∈ K.

Proof. Assume first that, the exact sequence splits and so there exists a ho-
momorphism σn : In → A such that πnoσn = iIn . Take an = σn(fn), then an ∈ A
and πn(an) = (πnoσn)(fn) = fn. Also since σn is a module homomorphism we have
for any two f, g ∈ R(L), ffn = gfn implies f.an = g.an and so, fπj(an) = gπj(an)
for all j ∈ K. Therefore by Lemma 2.1, supp(πj(an)) ⊆ supp(fn) for all j ∈ K.
Conversely suppose that there exists an ∈ A such that πn(an) = fn and
supp(πj(an)) ⊆ supp(fn) for all j ∈ K. Define σn : In → A by σn(ffn) = f.an,
then it is well defined by the given condition, and a module homomorphism. Also
for any f ∈ R(L), (πnoσn)(ffn) = πn(f.an) = fπn(an) = ffn implies πnoσn = iIn
and hence σn splits the exact sequence. �

Suppose first that every finitely generated submodule of a free R(L)-module is
flat. Since every finitely generated ideal is obviously embeddable in a free module,
namely R(L), L is an F -frame by Theorem 2.2.
Conversely, let L be an F -frame. Let A be a finitely generated submodule of
a free module. Then A can be embedded in a finitely generated free module.
So without loss of generality A ⊆

∐n
1 R(L). The proof is by induction on n.

If n = 1 then A is a finitely generated ideal, and so is flat by Theorem 2.2.
Suppose n > 1 and suppose the theorem has been proved for all finitely gen-
erated modules contained in

∐n−1
1 R(L). Let Fn be the free module

∐n
1 R(L).

Let πj and In be as in the above lemma. Since L is an F -frame and In is
finitely generated, In = 〈fn〉 for some fn ∈ R(L). Consider the homomorphism
θ : Fn → Fn defined by θ(g1, g2, ..., gn−1, gn) = (g1, g2, ..., gn−1, gnfn). Since A
is finitely generated and each element of A has a preimage in Fn under θ (let
a = (k1, k2, ..., kn) ∈ A, then kn = πn(a) = kfn, for some k ∈ R(L) and so
θ(k1, k2, ..., k) = (k1, k2, ..., kfn = kn) = a), there exists a finitely generated sub-
module B of Fn such that θ(B) = A. Also since fn ∈ πn(A), we may assume
without loss of generality that there exists bn ∈ B such that πn(bn) = 1. Clearly
πn(B) = 〈1〉. Consider the exact sequence

0 // Ln // B
πn // 〈1〉 // 0

Trivially the hypotheses of Lemma are satisfied, and so B = Ln
⊕
R(L). Clearly

Ln is finitely generated (being a homomorphic image of B), and moreover Ln =

{(g1, g2, ..., gn−1, 0) ∈ B} is embeddable in
∐n−1

1 R(L), so that Ln is flat by the
inductive hypothesis. Thus B is flat, as any free ideal and hence R(L) is flat and
direct sum of two flat modules is flat. Now consider the exact sequence
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0 // K // B
θ // A // 0

We shall prove that A is flat by proving that A is quasi-torsion-free relative to
this exact sequence. So let, r.a = 0 with r ∈ R(L) and a ∈ A. We have to show
that a = 0 on supp(r) with respect to the exact sequence i.e. to find b ∈ B and
k ∈ K such that θ(b) = a and k = b on supp(r) i.e. to find b ∈ B and k ∈ K such
that θ(b) = a and r.b = r.k. Since θ(B) = A, there exists b = (g1, g2, ..., gn) ∈ B
such that θ(b) = a. Also 0 = r.a = r.θ(g1, g2, ..., gn) = r.(g1, g2, ..., gn−1, gnfn) =
(rg1, rg2, ..., rgn−1, rgnfn) implies rgi = 0 for each i = 1, 2, .., n − 1 and rgnfn =
0. Therefore cozr ∧ (cozg1 ∨ cozg2 ∨ ... ∨ cozgn−1 ∨ cozgnfn) = cozr ∧ cozs = 0
where s = (g21 + g22 + ... + g2n−1 + g2nf

2
n) ∈ R(L). Since L is an F -frame, there

exists t ∈ R(L) such that cozr ∧ coz(1 − t) = 0 and cozs ∧ cozt = 0. Therefore
r = rt and st = 0. Taking u = t.b, then u ∈ K as θ(u) = θ(tg1, tg2, ..., tgn) =
(tg1, tg2, ..., tgn−1, tgnfn) = 0, since individual components are zero and st = 0,
and r.u = r.(t.b) = (rt).b = r.b. �

Since a module is flat if and only if every finitely generated submodule is flat,
we have:

Corollary 2.13. L is an F -frame if and only if every submodule of a free
R(L)-module is flat.
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