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Concerning finite frames, P -frames and basically
disconnected frames

S. K. Acharyya, G. Bhunia, and Partha Pratim Ghosh

Abstract. Let P be an ideal of closed quotients of a completely regular frame

L and RP (L) be the collection of all functions f in the ring R(L) whose
support belong to P. We have shown that R(L) is a Noetherian ring if and

only if R(L) is an Artinian ring if and only if L is a finite frame. Using this

result we have next shown that if P is the ideal of all compact closed quotients
of L and L is P-continuous then RP (L) turns out to be a Noetherian ring

if and only if L is finite. Moreover we have established that L is a P -frame

if and only if each ideal of R(L) is of the form RP (L) for some choice of
P. We have furnished equivalent conditions for RP (L) to become a prime

ideal, a free ideal and an essential ideal of R(L) separately in terms of the

cozero elements of L. These extend the analogous descriptions for the ideal
RK(L) of R(L) as shown in [13]. Finally we have shown that L is basically

disconnected if and only if R(L) is a coherent ring — analogous to Neville’s
result for topological space, see [17].

1. Introduction

A principal intention of this paper is to describe each of the three frames L
mentioned in the title, in terms of some algebraic properties of the ring R(L) of
all frame maps from the frame L(R) of reals to a (completely regular) frame L.
Most of the results hold good for any frame, although there are some which hold
for completely regular frames.

Analogous to the spatial case, it is known that a prime ideal P of R(L) extends
to a unique maximal ideal M (see [12, Proposition 5.4]) and the set of all prime
ideals that lie between P and M make a chain (see [11, Proposition 3.7]). In the
present article we have shown, if P $ M , then there exists a strictly ascending
chain of upper ideals — prime ideals with an immediate predecessor, of R(L) in
between P and M (see Theorem 2.5), thereby establishing the connection between
P -frames (see [12] & [10], for details) and frames L for which R(L) is Noetherian.
Once we arrive here, using various well known connections between maximal ideals
of R(L), prime elements of the Stone-Čech compactification βL of L and represen-
tation of elements of βL in terms of these prime elements we finally characterise
in §2 the finite regular frames as precisely those for which their pointfree rings of
continuous functions are Noetherian — see Theorem 2.9 & Theorem 2.10. Most of
this work depends crucially on the notions developed in [12], [10] & [11]; however,
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a frame, support of real valued continuous functions on a frame, continuous frame, P-continuous
frame, upper ideal, Noetherian ring, Artinian ring, coherent ring.
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2 S. K. ACHARYYA, G. BHUNIA, AND PARTHA PRATIM GHOSH

we discovered a minor error in the proof Lemma 3.7 of [10], which we have repaired
— see Example 2.1 and the correct proof thereafter.

We have used a number of characterizations of P -frames as given by [10] in
order to establish the results in §2. In the present paper we have also provided
an alternate characterisation of P -frames (see Theorem 3.11) in terms of ideals of
closed quotients of a frame. In fact (ring) ideals of pointfree rings of continuous
functions with support as ideals of closed compact quotients were investigated in
[13]; in the spatial case, rings of continuous functions with compact support or
functions which vanish at infinity were investigated in [1], [2] and the general case
in [3]. Thus, the pointfree extension was very natural and is precisely dealt in §3.
We show, in particular, that for continuous frames the pointfree rings of continuous
functions with compact support is a Noetherian ring, if and only if, the underlying
set of the frame is finite — see Corollary 3.1, and the principal theorem, Theorem
3.3, which provides much more.

When rings enter to grade spaces, the simplest criterion is to have every prime
ideal maximal yielding P -spaces, and then one has the next criteria of demand-
ing finitely generated ideals to be principal yielding F -spaces. The next best is
definitely : every finitely generated ideal is finitely presented, and we have a coher-
ent ring. Neville (see [17]) characterised completely regular topological spaces for
which its rings of real valued continuous functions are coherent; in Theorem 4.1 we
provide the pointfree analogue of this result, thereby establishing connection with
basically disconnected frames.

The results in this paper have used BUT — the Boolean Ultrafilter Theorem,
and their instances have been recorded. At some crucial places we could not avoid
the use of contrapositive arguments so that all the results are not constructively
valid. The constructive version of the results herein is still in progress.

2. Finite frames L versus Noetherian/Artinian rings R(L).

The following lemma which appears in [10, Lemma 3.7] :
Statement of [10, Lemma 3.7]: Let Q be an ideal of R(L). Then :⋂

M(Q) = {ϕ ∈ R(L) : r(cozϕ) ≤
∨
α∈Q

r(cozα)},

where M(Q) stands for the set of all maximal ideals of R(L) containing Q. ////

The author in [10] argues :
Since I is a maximal element of βL and I �

∨
α∈Q r(cozα), it follows that

I ∨
∨
α∈Q r(cozα) = 1βL = L.

The following counter example substantiates the gap in this argument :

Example 2.1. Choose L = OX, where X = [0, 1]; then R(L) = C(X)=the
ring of all real valued continuous functions on X. Clearly L = βL as L is compact
and in this case the join map j : βL→ L reduces to the identity map: L→ L. Let
I = X−{ 1

2} and Q = {f ∈ C(X) : f( 1
2 ) = 0 = f( 1

3 )}. Then I is a maximal element

of L and Q is an ideal of R(L). For each element f ∈ Q, cozf ≤ X − {1
2 ,

1
3} � I.

Consequently I �
∨
α∈Q cozα ≤ I, hence I ∨

∨
α∈Q cozα = I 6= X = 1L = 1βL.

Proof of the lemma, using BUT. It was correctly shown in [10] :

{ϕ ∈ R(L) : r(cozϕ) ≤
∨
α∈Q

r(cozα)} ⊆
⋂
M(Q).

We rectify only the proof of the reversed inequality. So, let f ∈
⋂
M(Q), and

if possible let r(cozf) �
∨
α∈Q r(cozα).
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CONCERNING FINITE FRAMES, P -FRAMES AND BASICALLY DISCONNECTED FRAMES 3

Then
∨
α∈Q r(cozα) 6= 1βL = L. Since any completely regular compact frame

is spatial, βL is spatial. Further, from the well known result of Buchi (see [18,
Proposition 5.3]), every element below the top of a spatial frame is the meet of all
the prime elements greater than or equal to it. Hence :

(1)
∨
α∈Q

r(cozα) =
∧
γ∈Γ

Jγ ,

where {Jγ : γ ∈ Γ} is a set of prime elements of βL. However, in a completely
regular frame prime elements and maximal elements are same (see [7]), so that
each Jγ is maximal in βL. By our assumption, r(cozf) � Jγ for some γ, implying
f /∈MJγ , a maximal ideal of R(L) associated with the point Jγ ∈ βL. On the other
hand from (1), Q ⊆ MJγ ⇒ f ∈

⋂
M(Q), implying f ∈ MJγ — a contradiction.

�

It is known for any frame L every prime ideal of R(L) is contained in a unique
maximal ideal M (see [12, Proposition 5.4]); we now show further, given any non-
maximal prime ideal P of R(L) there exists a strictly increasing chain of prime
ideals in between P and M . The development is akin to the development in the
spatial case as described in [15, Chapter 14].

First, for the existence of nth-roots :

Theorem 2.1. Assuming BUT, for any frame L and for any n ∈ N, for every
positive element f of RL there exists a positive element g of RL such that gn = f .

Proof. Since S = {g ∈ R∗(L) : cozg = 1} is a multiplicatively closed subset

of R∗(L) and for each f ∈ R(L), f = f(1+|f |)−1

(1+|f |)−1 , it follows that R(L) is the ring of

fractions of R∗(L) with respect to S, i.e., R(L) = S−1R∗(L).
Since R∗(L) is isomorphic to R(βL) and βL is a spatial frame, this yields that

R∗(L) is isomorphic to the ring C(X) for some topological space X.

Every positive element of C(X) has a nth root, and hence if f is a positive
element of R(L), then there exist a positive g ∈ R∗(L) and a h ∈ S such that
f = g

h ; but, g = gn1 , h = hn1 for some g1, h1 ∈ R∗(L) and of course h1 ∈ S. Then :

f = ( g1h1
)n with g1

h1
∈ S−1R∗(L) = R(L). �

Recall that an ideal I in a commutative lattice ordered ring A with unity is
said to be a l-ideal, (or, as in [15], an absolutely convex ideal) if for each a, b ∈ A,
|a| ≤ |b| and b ∈ I implies a ∈ I. Such an ideal I in A induces lattice structure
on the residue class ring A/I, compatible with its ring structure in the following
manner: for any a ∈ A, the residue class I(a) ≥ 0 if and only if there exists b ∈ A
such that b ≥ 0 and a − b ∈ I, where I(a) = {c ∈ A : a − c ∈ I}. Furthermore
for a, b ∈ A, I(a ∨ b) = I(a) ∨ I(b), and in particular I(|a|) = |I(a)| (see [15,
Chapter 5] for details). It was proved by Banaschewski and recorded by Dube in
[11, Lemma 3.5] that radical ideals of R(L) are absolutely convex and it is plain
that prime ideals are always radical ideals. Hence each prime ideal P in R(L)
is absolutely convex. Therefore the residue class ring R(L)/P turns out to be a
commutative lattice ordered ring with identity, which is further an f -ring if the
order is defined as above. Indeed R(L)/P turns out to be a totally ordered integral
domain : for any α ∈ R(L), (|α| + α)(|α| − α) = 4α+α− = 0, where α+ = α ∨ 0
and α− = (−α)∨ 0, which implies (|α|+ α) ∈ P or (|α| − α) ∈ P , i.e., P (α) ≤ 0 or
P (α) ≥ 0, since |α| ≥ 0. In particular using Theorem 2.1, for any α ≥ 0 in R(L)
and each n ∈ N, there is a β ∈ R(L) such that βn = α, and hence P (α) = (P (β))n.

Thus each positive element in R(L)/P has an nth-root, which is of course uniquely
determined as R(L)/P is a totally ordered integral domain.
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4 S. K. ACHARYYA, G. BHUNIA, AND PARTHA PRATIM GHOSH

If P is a non maximal prime ideal of R(L) and M is its unique extension
to a maximal ideal, then M/P is the only maximal ideal in the ring R(L)/P .
Consequently M/P consists of precisely all the non units of R(L)/P , producing :

Lemma 2.2. For any frame L, a non-maximal prime ideal P of R(L) with
M as the unique maximal ideal of R(L) containing it, the maximal ideal M/P of
R(L)/P precisely contains all the non-units of R(L)/P and :

(2) α, β ∈ R(L)/P, α non-unit ⇒ αβ < 1.

Analogous to the spatial case in [15, Chapter 14], for any frame L and a prime
ideal P of R(L), an ideal I = I/P of R(L)/P is said to be an upper ideal if the set
of all ideals of R(L)/P contained in I has a largest member; the following theorem
describes them completely :

Theorem 2.3. If P is a non maximal prime ideal of the ring R(L), then the
upper ideals of R(L)/P are precisely Pα for positive non units α of R(L)/P , where :

(3) Pα =
⋂
{Q : Q is a prime ideal of R(L)/P containing α}

=
⋃
n∈N
{β ∈ R(L)/P : |β| < α

1
n }

Proof. Similar to the spatial case, see [15, Theorem 14.6]. �

Theorem 2.4. An upper ideal of R(L) is not a z-ideal.

Proof. Let T be an upper ideal of R(L) with P its immediate predecessor.
Then P is a non maximal prime ideal ofR(L) and T/P is an upper ideal ofR(L)/P .
By Theorem 2.3, we can write T/P = Pα for some positive non unit α = P (a) of
R(L)/P ; obviously, a ≥ 0 in R(L). Without any loss of generality, we might choose
a such that 0 ≤ a ≤ 1 since P (a ∧ 1) = P (a) ∧ P (1) = P (a).

Since R(L) is uniformly complete (see [5, Theorem 4.1.5]), the choice of a

ensures the uniform convergence of the infinite series
∑∞
n=1 2−na

1
n to some g in

R(L).

Surely, for each n ∈ N, g ≥ 2−2na
1
2n , and an use of [8, §6] entails cozg =∨∞

n=1 coz(a
1
n ) = coza, which along with Lemma 2.2 imply :

P (g) ≥ 2−2nα
1
2n ≥ α 1

2nα
1
2n = α

1
n ,

i.e., for each n ∈ N, P (g) ≥ α 1
n .

Hence from Theorem 2.3, P (g) /∈ Pα ⇒ g /∈ T Since α ∈ Pα, we have a ∈ T ,
proving T not a z-ideal of R(L). �

We are now ready to prove the main theorem of this section :

Theorem 2.5 (Main Theorem on Existence of Ascending Chain). If P is a non
maximal prime ideal of R(L) and M the unique maximal ideal extending P , then
there exists a strictly ascending chain of upper ideals of R(L) which lie between P
and M .

Proof. Since ψ : I → I/P is an order preserving one-to-one correspondence
between the prime ideals I in R(L) that contain P onto the ideals in R(L)/P , we
shall first locate an upper ideal between {0} and M/P in R(L)/P . Indeed from
Lemma 2.2 any positive element α of M/P turns out to be a positive non unit, and
the corresponding prime ideal Pα is an upper ideal of R(L)/P by Theorem 2.3,
and of course {0} $ Pα ⊆M/P .
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Hence ψ−1({0}) $ ψ−1(Pα) ⊆ ψ−1(M/P ) which means that P $ ψ−1(Pα) ⊆
M , with ψ−1(Pα) an upper ideal in R(L). Since a maximal ideal in R(L) is a
z-ideal (see [14]), Theorem 2.4 yields P $ ψ−1(Pα) $M .

SinceM is the unique maximal ideal inR(L) extending the prime ideal ψ−1(Pα),
an use of the Principle of Mathematical Induction would produce a strictly ascend-
ing chain of upper ideals in R(L) between P and M as asserted. �

As an immediate consequence we obtain :

Corollary 2.6. If R(L) is a Noetherian ring then L is a P -frame.

Proof. We prove the contrapositive version of the statement.
If L is not a P -frame, then there exists a non maximal prime ideal P of R(L)

(see [10, Proposition 3.9]). By Theorem 2.5 there exists a strictly ascending chain
of prime ideals in R(L) containing P . Hence R(L) is not Noetherian. �

We shall now characterise the frames L for which R(L) is a Noetherian ring :

Theorem 2.7. For any frame L, if R(L) is a Noetherian ring then the under-
lying set of L is a finite set.

Proof. It is enough to prove under the hypothesis the finiteness of the under-
lying set of βL.

Given the hypothesis, Corollary 2.6 ensures L to be a P -frame; hence each
prime ideal in R(L) is maximal. This entails the Krull-dimension of R(L) = 0.

Since any Noetherian ring with Krull-dimension zero is Artinian there are only
finitely many maximal ideals in R(L) (see [4, Proposition 8.3, Theorem 8.5] ).

Using the one-to-one correspondence between the maximal ideals of R(L) and
the maximal elements of βL (see [12, Lemma 4.15]), it follows that βL has finitely
many maximal (and hence prime) elements. Furthermore, using BUT, βL is spatial,
and using Buchi’s result (see [18, Proposition 5.3]) that every element of a spatial
frame smaller than the top is a meet of prime elements, it follows that the underlying
set of βL is a finite set, proving the assertion. �

Theorem 2.8. If L is a finite regular frame then R(L) is a Noetherian ring.

Proof. Since L is regular, for each f ∈ R(L) we can write :

cozf =
∨
{x ∈ L : x ≺ cozf},

which is essentially a finite join. Therefore cozf ≺ cozf and hence cozf∨cozf∗ = 1,
implying L to be a P -frame.

Consequently each ideal of R(L) is a z-ideal (see [10, Proposition 3.9]); using
the one-to-one correspondence between the z-ideals of R(L) and the ideals of CozL
(see [12, page 157]), it follows that there are only finitely many ideals of R(L),
implying R(L) to be a Noetherian ring. �

Since for any completely regular frame L, R∗(L) is isomorphic to R(βL) and
L is finite when and only when βL is finite, Theorem 2.7 and Theorem 2.8 imply
R(L) is Noetherian if and only ifR∗(L) is Noetherian. Furthermore, a commutative
Artinian ring is known to be Noetherian (see [4, Theorem 8.5]), leading us to :

Theorem 2.9. for any completely regular frame L :

(1) R(L) is a Noetherian ring.
(2) R∗(L) is a Noetherian ring.
(3) R(L) is an Artinian ring.
(4) R∗(L) is an Artinian ring.
(5) L is a finite set.
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6 S. K. ACHARYYA, G. BHUNIA, AND PARTHA PRATIM GHOSH

If however L is not completely regular and L∗ is the largest completely regular
subframe of L, then the two rings R(L) and R(L∗) become isomorphic (see [6,
page (38), last paragraph]). Since each positive element in R(L) is a square (see [6,
Proposition 11(3)]) it follows that any isomorphism from R(L) onto R(L∗) carries
R∗(L) onto R∗(L∗). Therefore we can sharpen Theorem 2.9 to obtain :

Theorem 2.10. for any frame L :

(1) R(L) is a Noetherian ring.
(2) R∗(L) is a Noetherian ring.
(3) R(L) is an Artinian ring.
(4) R∗(L) is an Artinian ring.
(5) The largest completely regular subframe L∗ of L has its underlying set to

be finite.

3. Functions in R(L) with ideals of closed quotients as support

For any ideal P of closed quotients of L, we set

RP(L) = {f ∈ R(L) :↑ (cozf)∗ ∈ P}.
On taking P = K, the family of all compact closed quotients of L, we get

RP(L) = RK(L) = {f ∈ R(L) :↑ (cozf)∗ is compact}. The ring RK(L) have
been recently investigated in [13]. We observe the following connection between
the cozeros of the functions in RK(L) and the continuity of the frame L; recall,
a frame L is called continuous if for each a ∈ L, a =

∨
{b ∈ L : b << a}, where

b << a means that whenever S ⊆ L is with the condition a ≤
∨
S, the conclusion

is b ≤
∨
T for some finite subset T of S (see [18]). In establishing the connection

we would require the lemma from [13, Corollary 4.14] :

Lemma 3.1. L is continuous if and only if RK(L) is a free ideal of R(L).

Theorem 3.2. L is continuous if and only if {cozf : f ∈ RK(L)} generates
L.

Proof. First assume that L is continuous. Then Lemma 3.1 ensures
∨
{cozf :

f ∈ RK(L)} = 1. Since L is completely regular for each a ∈ L, a =
∨
{cozfα :

fα ∈ R(L), α ∈ Λ} for some index set Λ. Hence a =
∨
{cozfα : fα ∈ R(L), α ∈

Λ} ∧
∨
{cozf : f ∈ RK(L)} =

∨
{coz(fαf) : f ∈ RK(L), fα ∈ R(L), α ∈ Λ}. Now

since RK(L) is an ideal of R(L) it follows that each fαf in the last expression is a
member of RK(L). Hence {cozg : g ∈ RK(L)} generates L.

Conversely if {cozf : f ∈ RK(L)} generates L, then we can write 1 =
∨
{cozfβ :

fβ ∈ RK(L), β ∈ Γ} for some index set Γ. This surely implies that 1 = {cozf : f ∈
RK(L)} i.e. RK(L) is a free ideal of R(L) and Lemma 3.1 completes the proof. �

Motivated from above we define :

Definition 3.1. Given an ideal P of closed quotients of a frame L we say that
L is P-continuous, if {cozf f ∈ RP(L)} generate L.

Thus, K-continuous frames are precisely the continuous frames.
The idea of a frame being compact has its natural generalisation for each infinite

cardinal. More precisely, for any regular initial ordinal number ωα, a frame L is
called finally ωα-compact, if for every cover (i.e., a subset S ⊆ L with

∨
S = 1)

there exists a subcover of cardinality less than ωα (i.e., a subset A ⊆ S with
cardinality(A) < ωα and

∨
A = 1). A culmination of investigations for finally

ωα-compact spatial frames is described in [19].
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We shall now augment the list of equivalent statements in Theorem 2.10 for
P-continuous frames, for suitable specific choices of P :

Theorem 3.3. Given any frame L and a regular initial ordinal number ωα, let
Pα be the ideal of all closed quotients of L which are finally ωα-compact.

If L is Pα-continuous, then RPα(L) is a Noetherian ring, if and only if, L is
finite.

Proof. If L is finite, then RPα(L) = R(L), which is Noetherian by Theorem
2.8.

Conversely, if L is a finally ωα-compact with infinite underlying set, then again
RPα(L) = R(L), which is not Noetherian by Theorem 2.7.

On the other hand if L is not ωα-compact, then there is a subset A of L such
that

∨
A = 1 but for any subset S of A with |S| < ωα,

∨
S 6= 1. Let :

B = {
∨
S : S is a subset of A with cardinality < ωα}.

Then A ⊆ B and hence B is unbounded above with
∨
B = 1.

Choose b1 ∈ B; since B is unbounded above there exists a b0 ∈ B such that
b0 6≤ b1, and let b2 = b1 ∨ b0 ⇒ b1 � b2.

An use of the Principle of Mathematical Induction then yields a strictly in-
creasing sequence {bn : n ∈ ω0} of elements of B.

If In = {f ∈ RPα(L) : cozf ≤ bn}, for each n ∈ N then In is an ideal of RPα(L)
with In ⊆ In+1. Since L is Pα-continuous, we can write :

bn+1 =
∨
{cozfα : fα ∈ RPα(L), α ∈ Λ},

for some index set Λ. From this we can assert that there is at least one fα for which
cozfα � bn, because otherwise it would yield bn+1 ≤ bn, a contradiction. Therefore
fα ∈ In+1 but fα /∈ In. This proves that In $ In+1 for each n ∈ N. Hence RPα(L)
is not a Noetherian ring. �

Corollary 3.4. For a continuous frame L, RK(L) is a Noetherian ring if and
only if L is finite.

Corollary 3.5. For a L-continuous frame L where L is the ideal of all Lin-
delöf closed quotients of L, RL(L) is a Noetherian ring if and only if L is finite.

Theorem 3.6. RP(L) is a proper z-ideal of R(L), if and only if L /∈ P.

Proof. Since ↑ (coz1)∗ = L does not belong to P if and only if 1 /∈ RP(L),
the second part of the first sentence of this theorem is immediate.

If f, g ∈ RP(L) and h ∈ R(L) then coz(f − g) ≤ cozf ∨ cozg implies that
(cozf)∗∧(cozg)∗ ≤ (coz(f−g))∗, which further implies ↑ (coz(f−g))∗ ≤↑ [(cozf)∗∧
(cozg)∗] =↑ (cozf)∗∨ ↑ (cozg)∗ ∈ P. Hence ↑ (coz(f − g))∗ ∈ P, so that (f − g) ∈
RP(L).

Similarly, fh ∈ RP(L). �

It is well known in the spatial case for a topological space X that a z-ideal
of C(X) is prime if and only if it contains a prime ideal (see [15, Theorem 2.9]).
We show in this article that the pointfree version of this result is also true. Before
proving this, recall for α, β ∈ R(L), α ≥ β if and only if α(r,−) ≥ β(r,−) for each
r ∈ Q if and only if α(−, r) ≤ β(−, r) for each r ∈ Q. In particular for an α ≥ 0,
cozα = α(0,−) (see [6, Lemma 4]).

Lemma 3.7. for any z-ideal I of R(L) :

(1) I is prime.
(2) I contains a prime ideal.
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(3) For all g, h ∈ R(L), if gh = 0, then g ∈ I or h ∈ I.
(4) Given f ∈ R(L), there exists a cozero element a ∈ Coz[I] ≡ {cozg : g ∈ I}

such that f(0,−) ≤ a or f(−, 0) ≤ a.

Proof. (a)⇒(b) and (b)⇒(c) are trivial.
(c)⇒(d): Let (c) hold and f ∈ R(L). Since (f ∨ 0)((−f) ∨ 0) = o, it follows

that (f ∨ 0) ∈ I or ((−f) ∨ 0) ∈ I, say (f ∨ 0) ∈ I. Taking a = coz(f ∨ 0), we see
that f(0,−) ≤ (f ∨ 0)(0,−) = coz(f ∨ 0) = a. The other possibility can be tackled
analogously.

(d)⇒(a): Let (d) hold and g, h ∈ R(L) be such that gh ∈ I. Then for the
function f = |g| − |h| ∈ R(L), there is a j ∈ I with f(0,−) ≤ cozj say. This yields
coz(|g|) = |g|(0,−) = (f + |h|)(0,−) ≤ f(0,−) ∨ |h|(0,−) ≤ |j|(0,−) ∨ |h|(0,−) =
coz(|j|+ |h|). Consequently cozg = coz(|g|) = coz(|g|) ∧ coz(|j|+ |h|) = coz(|gj|+
|gh|) = coz(gj) ∨ coz(gh) ∈ Coz[I]. Since I is a z-ideal it follows that g ∈ I. The
possibility f(−, 0) ≤ cozj would yield analogously that h ∈ I. We conclude that I
is a prime ideal of R(L). �

The following three theorems are of independent interest telling about the var-
ious possibilities regarding the nature of the ideal RP(L)

Theorem 3.8. For any ideal P of closed quotients of a frame L, RP(L) is a
prime ideal of R(L) if and only if L /∈ P and if a ∧ b = 0 with a, b ∈ CozL, then
↑ a∗ ∈ P or ↑ b∗ ∈ P.

Proof. First suppose that RP(L) is prime. Then since it is a proper ideal of
R(L) it follows from Theorem 3.6 that L /∈ P. If f, g ∈ R(L) such that cozf∧cozg =
coz(fg) = 0⇒ fg = 0, then either f ∈ RP(L) or g ∈ RP(L). Hence ↑ (cozf)∗ ∈ P
or ↑ (cozg)∗ ∈ P.

Conversely, choose f, g ∈ RP(L) with fg = 0. Then cozf ∧ cozg = 0, which
yields from hypothesis ↑ (cozf)∗ ∈ P or ↑ (cozg)∗ ∈ P i.e., f ∈ RP(L) or g ∈
RP(L). Since from Theorem 3.6 RP(L) is a z-ideal, it follows from Lemma 3.7
that RP(L) is prime. �

Recall that an ideal I of a ring is said to be essential, if for any non-zero element
a of the ring there exists in I a multiple of a. A simple adaptation of Proposition
4.17 in [13] yields :

Theorem 3.9. RP(L) is an essential ideal of R(L) if and only if L is almost
P-continuous.

Theorem 3.10. For any ideal P of closed quotients of a completely regular
frame L, RP(L) is a free ideal of R(L) if and only if L is P-continuous.

Proof. Assume that RP(L) is a free ideal, i.e.,
∨
{cozf : f ∈ RP(L)} = 1.

The complete regularity of L entails CozL generates L, and hence for any a ∈
L, there exists an index set Λ, such that a =

∨
{cozgα : gα ∈ R(L), α ∈ Λ}.

Consequently :

a =
∨
{cozgα : gα ∈ R(L), α ∈ Λ} ∧

∨
{cozf : f ∈ RP(L)}

=
∨
{coz(gαf) : gα ∈ R(L), f ∈ RP(L), α ∈ Λ},

and we note that each gαf ∈ RP(L). Thus {cozf : f ∈ RP(L)} generates L,
implying L to be P-continuous.

The other part of the theorem is trivial. �
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The next result describes P -frames L via ideals of closed quotients of L.

Theorem 3.11. L is a P -frame if and only if each ideal of R(L) is of the form
RP(L) for some ideal P of closed quotients of L.

Proof. If each ideal of R(L) is of the form RP(L) which by Theorem 3.6 is a
z-ideal, then [10, Proposition 3.9] implies L to be a P -frame.

Conversely assume that L is a P -frame and I an ideal of R(L). Set P = {↑ a :
a ∈ L and there exists f ∈ I such that ↑ a ≤↑ (cozf)∗}; which is evidently an ideal
of closed quotients of L.

We shall show : I = RP(L).
It is plain that I ⊆ RP(L); for the reverse inclusion, choose any f ∈ RP(L).

Then ↑ (cozf)∗ ∈ P, and hence there exists g ∈ I such that ↑ (cozf)∗ ≤↑ (cozg)∗.
Consequently (cozg)∗ ≤ (cozf)∗ ⇒ cozf = (cozf)∗∗ ≤ (cozg)∗∗ = cozg, where we
use the fact that for the P -frame L, for any h ∈ R(L), cozh = (cozh)∗∗, a relation
easily verifiable. This yields, cozf = cozf ∧ cozg = coz(fg); but g ∈ I implies that
fg ∈ I, moreover I is a z-ideal of R(L) because L is a P -frame. Hence it follows
that f ∈ I. This proves that RP(L) ⊆ I. �

4. Basically disconnected frames L versus coherent rings R(L).

This section contains just a single proposition.

Theorem 4.1. for any completely regular frame L :

(1) L is basically disconnected.
(2) R(L) is a coherent ring.
(3) R∗(L) is a coherent ring.

Proof. [9, Proposition 2] tells that L is a basically disconnected frame if and
only if R(L) is Dedekind σ-complete which means that for any countable subset
{fn : n ∈ ω0} of R(L),

∨
{fn : n ∈ ω0} ∈ R(L). However, [16, Theorem 3] ensures

R(L) is Dedekind σ-complete, if and only if, R(L) is a coherent ring; hence the
equivalence of the first two statements follow.

On the other hand, from [5, Proposition 8.4.5], L is basically disconnected if
and only if βL is basically disconnected. Since R∗(L) is isomorphic to R(βL),
it follows that R(L) is a coherent ring precisely when R∗(L) is a coherent ring,
thereby completing the proof. �
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